Skip to main content
Log in

Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343, 2012), with the weak convergence to a weak solution proven. In this article, we provide an optimal rate error analysis. A convex splitting approach is taken in the temporal discretization, which in turn leads to the unique solvability and unconditional energy stability. Instead of the more standard \(\ell ^\infty (0,T;L^2) \cap \ell ^2 (0,T; H^2)\) error estimate, we perform a discrete \(\ell ^\infty (0,T; H^1) \cap \ell ^2 (0,T; H^3 )\) error estimate for the phase variable, through an \(L^2\) inner product with the numerical error function associated with the chemical potential. As a result, an unconditional convergence (for the time step \(\tau \) in terms of the spatial resolution h) is derived. The nonlinear analysis is accomplished with the help of a discrete Gagliardo–Nirenberg type inequality in the finite element space, gotten by introducing a discrete Laplacian \(\Delta _h\) of the numerical solution, such that \(\Delta _h \phi \in S_h\), for every \(\phi \in S_h\), where \(S_h\) is the finite element space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baňas, L., Nürnberg, R.: Adaptive finite element methods for the Cahn–Hilliard equations. J. Comput. Appl. Math. 218(1), 2–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baňas, L., Nürnberg, R.: A posteriori estimates for the Cahn Hilliard equation with obstacle. M2AN Math. Model. Numer. Anal. 43(5), 1003–1026 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, J.W., Blowey, J.F.: An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. M2AN. Math. Model. Numer. Anal. 33(5), 971–987 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baskaran, A., Hu, Z., Lowengrub, J., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  7. Chen, C.M., Huang, Y.Q.: High Accuracy Theory in Finite Element Methods, (in Chinese). Hunan Science and Technology Press, Changsha (1975)

    Google Scholar 

  8. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, W., Liu, Y., Wang, C., Wise, S.M.: Convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard–Hele–Shaw equation. Math. Comput. (2016). doi:10.1090/mcom3052

  10. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59(3), 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.G.: Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Collins, C., Shen, J., Wise, S.M.: Unconditionally stable finite difference multigrid schemes for the Cahn–Hilliard–Brinkman equation. Commun. Comput. Phys. 13, 929–957 (2013)

    Article  MathSciNet  Google Scholar 

  13. Diegel, A., Feng, X., Wise, S.M.: Convergence analysis of an unconditionally stable method for a Cahn–Hilliard–Stokes system of equations. SIAM J. Numer. Anal. 53, 127–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Q., Nicolaides, R.: Numerical analysis of a continuum model of a phase transition. SIAM J. Numer. Anal. 28, 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, C.M., French, D.A.: Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Math. 38, 97–128 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elliott, C.M., French, D.A., Milner, F.A.: A second-order splitting method for the Cahn–Hilliard equation. Numer. Math. 54, 575–590 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58, 603–630 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, X., Karakashian, O.A.: Fully discrete dynamic dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard equation of phase transition. Math. Comput. 76, 1093–1117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, X., Wise, S.M.: Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele–Shaw flow and its fully discrete finite element approximation. SIAM J. Numer. Anal. 50, 1320–1343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, X., Wu, H.: A posteriori error estimates for finite element approximations of the Cahn–Hilliard equation and the Hele–Shaw flow. J. Comput. Math. 26, 767–796 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M.: Second-order convex splitting schemes for nonlocal Cahn–Hilliard and Allen–Cahn equations. J. Comput. Phys. 277, 48–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guan, Z., Wang, C., Wise, S.M.: A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation. Numer. Math. 128, 377–406 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guzmán, J., Leykekhman, D., Rossmann, J., Schatz, A.H.: Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112, 221–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, L.: Error estimation of a class of stable spectral approximation to the Cahn–Hilliard equation. J. Sci. Comput. 41(3), 461–482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for the second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation with convection. SIAM J. Numer. Anal. 47, 2660–2685 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khiari, N., Achouri, T., Ben Mohamed, M.L., Omrani, K.: Finite difference approximate solutions for the Cahn–Hilliard equation. Numer. Methods Partial Differ. Equ. 23(2), 437–455 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  31. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. A 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. A 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, C., Wise, S.M.: Global smooth solutions of the modified phase field crystal equation. Methods Appl. Anal. 17, 191–212 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, X., Wu, H.: Long-time behavior for the Hele–Shaw–Cahn–Hilliard system. Asympt. Anal. 78(4), 217–245 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Wang, X., Zhang, Z.: Well-posedness of the Hele–Shaw–Cahn–Hilliard system. Ann. I. H. Poincaré CAN. 30(3), 367–384 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wise, S.M., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the grants NSF DMS-1418689 (C. Wang), NSFC 11271281 (C. Wang), NSF DMS-1418692 (S. Wise), NSFC 11171077, 91130004 and 11331004 (W. Chen), and the fund by China Scholarship Council 201406100085 (Y. Liu). Y. Liu thanks University of California-San Diego for support during his visit. C. Wang also thanks Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, for support during his visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Wise.

Appendix 1: Discrete Gronwall inequality

Appendix 1: Discrete Gronwall inequality

We need the following discrete Gronwall inequality, cited in [26, 30]:

Lemma 4.1

Fix \(T>0\), and suppose \(\left\{ a_m\right\} _{m=1}^M\), \(\left\{ b_m\right\} _{m=1}^M\) and \(\left\{ c_m\right\} _{m=1}^{M-1}\) are non-negative sequences such that \(\tau \sum _{m=1}^{M-1} c_m \le C_1\), where \(C_1\) is independent of \(\tau \) and M, and \(M\cdot \tau = T\). Suppose that, for all \(\tau >0\),

$$\begin{aligned} a_M + \tau \sum _{m=1}^{M} b_m \le C_2 +\tau \sum _{m=1}^{M-1} a_m c_m , \end{aligned}$$
(4.1)

where \(C_2>0\) is a constant independent of \(\tau \) and M. Then, for all \(\tau >0\),

$$\begin{aligned} a_M +\tau \sum _{m=1}^{M} b_m \le C_2 \exp \left( \tau \sum _{m=1}^{M-1}c_m \right) \le C_2\exp (C_1). \end{aligned}$$
(4.2)

Note that the sum on the right-hand-side of (4.1) must be explicit.

Lemma 4.2

Suppose \(\left\{ a_m\right\} _{m=1}^M\) and \(\left\{ b_m\right\} _{m=0}^M\) are sequences such that \(b_0=0\). Define, for any integer m, \(1\le m\le M\),

$$\begin{aligned} I_m := \sum _{j=1}^m a_j b_j(b_j-b_{j-1}). \end{aligned}$$
(4.3)

Then the following identity is valid:

$$\begin{aligned} I_m =\ -\frac{1}{2} \sum _{j=1}^m(a_j-a_{j-1})b_{j-1}^2 + \frac{1}{2}\sum _{j=1}^{m} a_j (b_j - b_{j-1})^2 +\frac{1}{2}a_mb_m^2 . \end{aligned}$$
(4.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, W., Wang, C. et al. Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135, 679–709 (2017). https://doi.org/10.1007/s00211-016-0813-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0813-2

Mathematics Subject Classification

Navigation