Skip to main content
Log in

Discretization of a Distributed Optimal Control Problem with a Stochastic Parabolic Equation Driven by Multiplicative Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A discretization of an optimal control problem of a stochastic parabolic equation driven by multiplicative noise is analyzed. The state equation is discretized by the continuous piecewise linear element method in space and by the backward Euler scheme in time. The convergence rate \( O(\tau ^{1/2} + h^2) \) is rigorously derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi, P.: Stochastic Calculus. Springer, Cham (2017)

    Book  Google Scholar 

  2. Barbu, V., Rockner, M.: A splitting algorithm for stochastic partial differential equations driven by linear multiplicative noise. Stoch. Partial Differ. Equ. Anal. Comput. 5, 457–471 (2017) Anal. Comput. 5, 457–471 (2017)

  3. Barth, A., Lang, A.: Milstein approximation for advection-diffusion equations driven by multiplicative noncontinuous martingale noises. Appl. Math. Optim. 66, 387–413 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bensoussan, A.: Stochastic maximum principle for distributed parameter systems. J. Franklin Inst. 315, 387–406 (1983)

    Article  MathSciNet  Google Scholar 

  5. Bensoussan, A., Viot, M.: Optimal control of stochastic linear distributed parameter systems. SIAM J. Control 13(4), 904–926 (1975)

    Article  MathSciNet  Google Scholar 

  6. Bouchard, B., Touzi, N.: Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111, 175–206 (2004)

    Article  MathSciNet  Google Scholar 

  7. Crisan, D., Manolarakis, K.: Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing. SIAM J. Financial Math. 3, 534–571 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cui, J., Hong, J.: Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient. SIAM J. Numer. Anal. 57, 1815–1841 (2019)

    Article  MathSciNet  Google Scholar 

  9. Du, K., Meng, Q.: A maximum principle for optimal control of stochastic evolution equations. SIAM J. Control Optim. 51, 4343–4362 (2013)

    Article  MathSciNet  Google Scholar 

  10. Du, K., Tang, S.: Strong solution of backward stochastic partial differential equations in \( \cal{C}^2 \) domains. Proba. Theory. Related Fileds 154, 255–285 (2012)

    Article  Google Scholar 

  11. Dunst, T., Prohl, A.: The forward-backward stochastic heat equation: numerical analysis and simulation. SIAM J. Sci. Comput. 38, A2725–A2755 (2016)

    Article  MathSciNet  Google Scholar 

  12. Fuhrman, M., Hu, Y., Tessitore, G.: Stochastic maximum principle for optimal control of SPDEs. Appl. Math. Optim. 68, 181–217 (2013)

    Article  MathSciNet  Google Scholar 

  13. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–63 (2005)

    Article  MathSciNet  Google Scholar 

  14. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Netherlands (2009)

    MATH  Google Scholar 

  15. Hu, Y., Nualart, D., Song, X.: Malliavin calculus for backward stochastic differential equations and application to numerical solutions. Ann. Appl. Probab. 21, 2379–2423 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hu, Y., Peng, S.: Maximum principle for semilinear stochastic evolution control systems. Stoch. Stoch. Rep. 33, 159–180 (1990)

    Article  MathSciNet  Google Scholar 

  17. Jentzen, A., R ockner, M. : A Milstein scheme for SPDEs. Found. Comput. Math. 15, 313–362 (2015)

  18. Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 34, 217–251 (2014)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Tang, S.: Approximation of backward stochastic partial differential equations by a splitting-up method. J. Math. Anal. Appl. 493(1), (2021)

    Article  MathSciNet  Google Scholar 

  20. Lu, Q., Zhang, X.: General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions. Springer, Cham (2014)

    MATH  Google Scholar 

  21. Lu, Q., Zhang, X.: A mini-course on stochastic control. (2016). arXiv:1612.02523,

  22. Lunardi, A.: Interpolation Theory. Edizioni della Normale, Pisa (2018)

    Book  Google Scholar 

  23. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints. SIAM J. Control Optim. 47, 1150–1177 (2008)

    Article  MathSciNet  Google Scholar 

  24. Pardoux, E., Rascanu, A.: Stochastic differential equations, backward SDEs, partial differential equations. Springer, Cham (2014)

    Book  Google Scholar 

  25. Peng, S., Xu, M.: Numerical algorithms for backward stochastic differential equations with 1-d Brownian motion: convergence and simulations. ESAIM: M2AN 45(2), 335–360 (2011)

  26. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  27. Wang, P., Zhang, X.: Numerical solutions of backward stochastic differential equations: a finite transposition method. C. R. Math. Acad. Sci. Paris 349, 901–903 (2011)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y.: A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Math. Control Relat. Fields 6, 489–515 (2016)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y.: L2-regularity of solutions to linear backward stochastic heat equations, and a numerical application. J. Math. Anal. Appl. 486(1), (2020)

    Article  MathSciNet  Google Scholar 

  30. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43, 1363–1384 (2005)

    Article  MathSciNet  Google Scholar 

  31. Zhang, J.: A numerical scheme for BSDEs. Ann. Appl. Probab. 14, 459–488 (2004)

    Article  MathSciNet  Google Scholar 

  32. Zhao, W., Chen, L., Peng, S.: A new kind of accurate numerical method for backward stochastic differential equations. SIAM J. Sci. Comput. 28, 1563–1581 (2006)

    Article  MathSciNet  Google Scholar 

  33. Zhao, W., Fu, Y., Zhou, T.: New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations. SIAM J. Sci. Comput. 36, A1731–A1751 (2014)

    Article  MathSciNet  Google Scholar 

  34. Zhao, W., Zhou, T., Kong, T.: High order numerical schemes for second-order FBSDEs with applications to stochastic optimal control. Commun. Comput. Phys. 21, 808–834 (2017)

    Article  MathSciNet  Google Scholar 

  35. Zhou, X.: On the necessary conditions of optimal controls for stochastic partial differential equations. SIAM J. Control Optim. 31, 1462–1478 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binjie Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Binjie Li was supported in part by the National Natural Science Foundation of China (11901410).

Proof of Lemma 4.3

Proof of Lemma 4.3

Since (27) can be proved by the same argument as that used in the proof of [23, Theorem 5.1], we only prove (26), using the techniques in the proof of [26, Theorem 12.1]. Let

$$\begin{aligned} \theta _j := P_j - \eta (t_j), \quad 0 \le j \le J. \end{aligned}$$

By (25) we have

$$\begin{aligned} \begin{aligned}&\sum _{j=0}^{J-1} [P_j - P_{j+1}, (-\Delta _h)^{-1} \theta _j] + \sum _{j=0}^{J-1} \tau [P_j, \theta _j] \\&\quad ={} \sum _{j=0}^{J-1} \int _{t_j}^{t_{j+1}} [Q_hg(t), (-\Delta _h)^{-1} \theta _j] \, \mathrm {d}t. \end{aligned} \end{aligned}$$
(112)

Since (24) implies

$$\begin{aligned} {\left\{ \begin{array}{ll} -\eta '(t) - \Delta _h \eta (t) = Q_h g(t), \quad 0 \le t \le T, \\ \eta (T) = 0, \end{array}\right. } \end{aligned}$$
(113)

we obtain

$$\begin{aligned}&\sum _{j=0}^{J-1} \int _{t_j}^{t_{j+1}} [-\eta '(t), (-\Delta _h)^{-1}\theta _j] \, \mathrm {d}t + \sum _{j=0}^{J-1} \int _{t_j}^{t_{j+1}} [\eta (t), \theta _j] \, \mathrm {d}t \\&\quad ={} \sum _{j=0}^{J-1} \int _{t_j}^{t_{j+1}} [Q_hg(t), (-\Delta _h)^{-1} \theta _j] \, \mathrm {d}t. \end{aligned}$$

By integration by parts, we then obtain

$$\begin{aligned} \begin{aligned}&\sum _{j=0}^{J-1} [\eta (t_j) - \eta (t_{j+1}), (-\Delta _h)^{-1}\theta _j] + \sum _{j=0}^{J-1} \int _{t_j}^{t_{j+1}} [\eta (t), \theta _j] \, \mathrm {d}t \\&\quad ={} \sum _{j=0}^{J-1} \int _{t_j}^{t_{j+1}} [Q_hg(t), (-\Delta _h)^{-1} \theta _j] \, \mathrm {d}t. \end{aligned} \end{aligned}$$
(114)

Combining (112) and (114) yields

$$\begin{aligned} \sum _{j=0}^{J-1} [\theta _j - \theta _{j+1}, (-\Delta _h)^{-1} \theta _j] + \sum _{j=0}^{J-1} \int _{t_j}^{t_{j+1}} [P_j - \eta (t), \theta _j] \, \mathrm {d}t = 0. \end{aligned}$$

Since

$$\begin{aligned} \sum _{j=0}^{J-1} [\theta _j - \theta _{j+1}, (-\Delta _h)^{-1}\theta _j]&= \sum _{j=0}^{J-1} \Vert {\theta _j} \Vert _{\dot{H}_h^{-1}(\mathcal O)}^2 - [(-\Delta _h)^{-1/2}\theta _j, (-\Delta _h)^{-1/2} \theta _{j+1}] \\&\ge \sum _{j=0}^{J-1} \big ( \Vert {\theta _j} \Vert _{\dot{H}_h^{-1}(\mathcal O)}^2 - \Vert {\theta _j} \Vert _{\dot{H}_h^{-1}(\mathcal O)} \Vert {\theta _{j+1}} \Vert _{\dot{H}_h^{-1}(\mathcal O)} \big ) \\&\ge \frac{1}{2} \Vert {\theta _0} \Vert _{\dot{H}_h^{-1}(\mathcal O)}^2 - \frac{1}{2} \Vert {\theta _J} \Vert _{\dot{H}_h^{-1}(\mathcal O)}^2 \\&= \frac{1}{2} \Vert {\theta _0} \Vert _{\dot{H}_h^{-1}(\mathcal O)}^2 \quad \text {(by the fact } P_J = \eta (t_J) = 0 ), \end{aligned}$$

it follows that

$$\begin{aligned} \frac{1}{2} \Vert {\theta _0} \Vert _{\dot{H}_h^{-1}(\mathcal O)}^2 + \sum _{j=0}^{J-1} \int _{t_j}^{t_{j+1}} [P_j - \eta (t), \theta _j] \, \mathrm {d}t \le 0. \end{aligned}$$

Hence,

$$\begin{aligned}&\frac{1}{2} \Vert {\theta _0} \Vert _{\dot{H}_h^{-1}(\mathcal O)}^2 + \sum _{j=0}^{J-1} \tau \Vert {\theta _j} \Vert _{L^2(\mathcal O)}^2 \\&\quad \le {} \sum _{j=0}^{J-1} \int _{t_j}^{t_{j+1}} [\eta (t) - \eta (t_j), \theta _j] \, \mathrm {d}t \\&\quad \le {} \Big ( \sum _{j=0}^{J-1} \Vert {\eta - \eta (t_j)} \Vert _{ L^2(t_j,t_{j+1};L^2(\mathcal O)) }^2 \Big )^{1/2} \Big ( \sum _{j=0}^{J-1} \tau \Vert {\theta _j} \Vert _{L^2(\mathcal O)}^2 \Big )^{1/2} \\&\quad \le {} \frac{1}{2}\sum _{j=0}^{J-1} \Vert {\eta - \eta (t_j)} \Vert _{ L^2(t_j,t_{j+1};L^2(\mathcal O)) }^2 + \frac{1}{2} \sum _{j=0}^{J-1} \tau \Vert {\theta _j} \Vert _{L^2(\mathcal O)}^2, \end{aligned}$$

which implies

$$\begin{aligned} \Vert {\theta _0} \Vert _{\dot{H}_h^{-1}(\mathcal O)}&\le \Big ( \sum _{j=0}^{J-1} \Vert {\eta - \eta (t_j)} \Vert _{L^2(t_j,t_{j+1};L^2(\mathcal O))}^2 \Big )^{1/2}. \end{aligned}$$

Therefore, by the standard estimate

$$\begin{aligned} \sum _{j=0}^{J-1} \Vert {\eta - \eta (t_j)} \Vert _{L^2(t_j,t_{j+1};\mathcal O)}^2 \lesssim \tau ^2 \Vert {\eta '} \Vert _{L^2(0,T;L^2(\mathcal O))}^{2} \lesssim \tau ^2 \Vert {g} \Vert _{L^2(0,T;L^2(\mathcal O))}^{2}, \end{aligned}$$

we obtain

$$\begin{aligned} \Vert {\theta _0} \Vert _{\dot{H}_h^{-1}(\mathcal O)} \lesssim \tau \Vert {g} \Vert _{L^2(0,T;L^2(\mathcal O))}, \end{aligned}$$

namely,

$$\begin{aligned} \Vert {\eta (0) - P_0} \Vert _{\dot{H}_h^{-1}(\mathcal O)} \lesssim \tau \Vert {g} \Vert _{L^2(0,T;L^2(\mathcal O))}. \end{aligned}$$

Similarly, we can prove

$$\begin{aligned} \Vert {\eta (t_j) - P_j} \Vert _{\dot{H}_h^{-1}(\mathcal O)} \lesssim \tau \Vert {g} \Vert _{L^2(0,T;L^2(\mathcal O))}, \quad 1 \le j < J. \end{aligned}$$

Since \( P_J = \eta (t_J) = 0 \), this proves (26) and thus completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhou, Q. Discretization of a Distributed Optimal Control Problem with a Stochastic Parabolic Equation Driven by Multiplicative Noise. J Sci Comput 87, 68 (2021). https://doi.org/10.1007/s10915-021-01480-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01480-5

Keywords

Navigation