Skip to main content
Log in

Stochastic Maximum Principle for Optimal Control of SPDEs

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We prove a version of the maximum principle, in the sense of Pontryagin, for the optimal control of a stochastic partial differential equation driven by a finite dimensional Wiener process. The equation is formulated in a semi-abstract form that allows direct applications to a large class of controlled stochastic parabolic equations. We allow for a diffusion coefficient dependent on the control parameter, and the space of control actions is general, so that in particular we need to introduce two adjoint processes. The second adjoint process takes values in a suitable space of operators on L 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan, A.: Stochastic maximum principle for distributed parameter systems. J. Franklin Inst. 315(5–6), 387–406 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  3. Du, K., Meng, Q.: Stochastic maximum principle for infinite dimensional control systems. Preprint. arXiv:1208.0529

  4. Du, K., Meng, Q.: A general maximum principle for optimal control of stochastic evolution equations. Preprint. arXiv:1206.3649

  5. Fuhrman, M., Hu, Y., Tessitore, G.: Stochastic maximum principle for optimal control of SPDEs. C. R. Math. Acad. Sci. Paris 350(13–14), 683–688 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guatteri, G.: Stochastic maximum principle for SPDEs with noise and control on the boundary. Syst. Control Lett. 60(3), 198–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guatteri, G., Tessitore, G.: On the backward stochastic Riccati equation in infinite dimensions. SIAM J. Control Optim. 44(1), 159–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, Y., Peng, S.: Adapted solution of a backward semilinear stochastic evolution equation. Stoch. Anal. Appl. 9(4), 445–459 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, Y., Peng, S.: Maximum principle for semilinear stochastic evolution control systems. Stoch. Stoch. Rep. 33(3–4), 159–180 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 16. Birkhauser, Basel (1995)

    Book  MATH  Google Scholar 

  11. Lü, Q., Zhang, X.: General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions. Preprint. arXiv:1204.3275

  12. Øksendal, B., Sulem, A., Zhang, T.: Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations. Adv. Appl. Probab. 43(2), 572–596 (2011)

    Article  Google Scholar 

  13. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  14. Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28(4), 966–979 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tang, S., Li, X.: Maximum principle for optimal control of distributed parameter stochastic systems with random jumps. In: Differential Equations, Dynamical Systems, and Control Science. Lecture Notes in Pure and Appl. Math., vol. 152, pp. 867–890. Dekker, New York (1994)

    Google Scholar 

  16. Tessitore, G.: Some remarks on the Riccati equation arising in an optimal control problem with state- and control-dependent noise. SIAM J. Control Optim. 30(3), 717–744 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tessitore, G.: Existence, uniqueness and space regularity of the adapted solutions of a backward SPDE. Stoch. Anal. Appl. 14(4), 461–486 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Stochastic integration in UMD Banach spaces. Ann. Probab. 35(4), 1438–1478 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yong, J., Zhou, X.Y.: Stochastic Controls. Hamiltonian Systems and HJB Equations. Applications of Mathematics (New York), vol. 43. Springer, New York (1999)

    MATH  Google Scholar 

  20. Zhou, X.Y.: On the necessary conditions of optimal controls for stochastic partial differential equations. SIAM J. Control Optim. 31(6), 1462–1478 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the referee for his valuable and precise comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Hu.

Appendix: Stochastic Integrals in L p Spaces

Appendix: Stochastic Integrals in L p Spaces

In this appendix we sketch the construction and some basic properties of stochastic integrals with respect to a finite dimensional Wiener process, taking values in an L p-space. The few facts collected below are enough for the present paper.

Let \((W^{1}_{t},\ldots,W^{d}_{t})_{t\ge0}\) be a standard, d-dimensional Wiener process defined in some complete probability space \((\varOmega ,\mathcal{F},\mathbb{P})\). We denote by \((\mathcal{F}_{t})_{t\ge0}\) the corresponding natural filtration, augmented in the usual way, and we denote by \(\mathcal{P}\) the progressive σ-algebra on Ω×[0,T], where T>0 is a given number. Let \(L^{p}:=L^{p}(D,\mathcal{D},m)\) be the usual space, where m is a positive, σ-finite measure and p∈[2,∞). The integrand processes will be functions \(H:\varOmega\times [0,T]\times D\to\mathbb{R}^{d}\), which are assumed to be \(\mathcal{P}\otimes\mathcal{D}\)-measurable. When H is of special type, i.e. it has components of the form

$$H^j(\omega,t,x)=\sum_{i=1}^Nh^j_i( \omega,t)f^j_i(x) $$

for j=1,…,d, \(h^{j}_{i}\) bounded \(\mathcal{P}\)-measurable, \(f^{j}_{i}\) bounded \(\mathcal{D}\)-measurable, then the stochastic integral I t (x) is defined for fixed xD by the formula \(I_{t}(x)=\int_{0}^{t}H_{s}^{j}(x) dW^{j}_{s}= f^{j}_{i}(x) \int_{0}^{t}h^{j}_{i}(s) dW^{j}_{s}\). Using the Burkholder–Davis–Gundy inequalities for real-valued stochastic integrals, we have for some constant c p (depending only on p):

$$\mathbb{E} \bigl|I_t(x)\bigr|^p\le c_p\mathbb{E} \Biggl( \int_0^t \bigl|H_s(x)\bigr|^2 ds \biggr)^{p/2} $$

where \(|H_{s}(x)|^{2}=\sum_{j=1}^{d}|H_{s}^{j}(x)|^{2}\). Since p≥2 we have, by en elementary inequality,

$$\mathbb{E} \bigl|I_t(x)\bigr|^p\le c_p \biggl( \int _0^t \bigl(\mathbb{E}\bigl|H_s(x)\bigr|^p \bigr)^{2/p} ds \biggr)^{p/2} = c_p \biggl( \int _0^t \bigl\|H_s(x)\bigr\|^2_{L^p(\varOmega;\mathbb{R}^d)} ds \biggr)^{p/2}. $$

Integrating with respect to m we obtain, again by elementary arguments,

which can be written

$$ \mathbb{E}\|I_t\|_{L^p(D)}^p \le c_p \biggl( \int_0^t \bigl( \mathbb{E}\|H_s\|^p_{L^p(D;\mathbb{R}^d)}\bigr)^{2/p} ds \biggr)^{p/2} $$
(A.1)

or equivalently

$$\|I_t\|_{L^p(\varOmega\times D)} \le c_p^{1/p} \biggl( \int_0^t \|H_s\|^2_{L^p(\varOmega\times D;\mathbb{R}^d)} ds \biggr)^{1/2}. $$

Finally, by standard arguments, the stochastic integral can be extended to the class of \(\mathcal{P}\otimes\mathcal{D}\)-measurable integrands H for which the right-hand side of (A.1) is finite, and the inequality (A.1) remains true.

We finally note that from (A.1) and the Hölder inequality it follows that

$$ \mathbb{E}\|I_t\|_{L^p(D)}^p \le c_p\int_0^t \mathbb{E} \|H_s\|^p_{L^p(D;\mathbb{R}^d)} ds t^{(p-2)/2}. $$
(A.2)

Now suppose that there exist regular conditional probabilities \(\mathbb{P}(\cdot|\mathcal{F}_{t})\) given any \(\mathcal{F}_{t}\) (this holds for instance if the Wiener process is canonically realized on the space of \(\mathbb{R}^{d}\)-valued continuous functions). Then a slight modification of the previous passages shows the validity of the following conditional variant of (A.2): for 0≤rt,

$$ \mathbb{E}^{\mathcal{F}_r} \biggl\|\int_r^tH_s^j dW^j_s\biggr\|_{L^p(D)}^p\le c_p\int_r^t \mathbb{E}^{\mathcal{F}_r} \|H_s\|^p_{L^p(D;\mathbb{R}^d)} ds (t-r)^{(p-2)/2}. $$
(A.3)

This is used in the proof of Proposition 5.2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrman, M., Hu, Y. & Tessitore, G. Stochastic Maximum Principle for Optimal Control of SPDEs. Appl Math Optim 68, 181–217 (2013). https://doi.org/10.1007/s00245-013-9203-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-013-9203-7

Keywords

Navigation