Skip to main content
Log in

Linearly Stabilized Schemes for the Time Integration of Stiff Nonlinear PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In many applications, the governing PDE to be solved numerically contains a stiff component. When this component is linear, an implicit time stepping method that is unencumbered by stability restrictions is often preferred. On the other hand, if the stiff component is nonlinear, the complexity and cost per step of using an implicit method is heightened, and explicit methods may be preferred for their simplicity and ease of implementation. In this article, we analyze new and existing linearly stabilized schemes for the purpose of integrating stiff nonlinear PDEs in time. These schemes compute the nonlinear term explicitly and, at the cost of solving a linear system with a matrix that is fixed throughout, are unconditionally stable, thus combining the advantages of explicit and implicit methods. Applications are presented to illustrate the use of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. We will refer to these simply as IMEX methods.

  2. To address this deficiency, [1] recommended mCNAB, a scheme closely related to CNAB but with stronger damping of high frequencies. As it turns out, the two are equivalent within this linear stabilization framework.

  3. For simplicity, going forward we will refer to linearly stabilized IMEX methods without prefacing by “linearly stabilized”. For example, we will refer to the “the linearly stabilized CNAB method” as CNAB and the “the linearly stabilized SBDF3 method” as SBDF3, etc.

References

  1. Ascher, U.M., Ruuth, S.J., Wetton, B.T.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  Google Scholar 

  2. Bernoff, A.J., Bertozzi, A.L., Witelski, T.P.: Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff. J. Stat. Phys. 93(3–4), 725–776 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley (2000)

  4. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)

    Article  MathSciNet  Google Scholar 

  6. Douglas, J., Jr., Dupont, T.: Alternating-direction Galerkin methods on rectangles. In: Hubbard, B. (Ed.) Numerical Solution of Partial Differential Equations II, pp. 133–214. Academic Press (1971)

  7. Duchemin, L., Eggers, J.: The explicit–implicit–null method: removing the numerical instability of PDEs. J. Comput. Phys. 263, 37–52 (2014)

    Article  MathSciNet  Google Scholar 

  8. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Unpublished article (1998)

  9. Glasner, K.: A diffuse interface approach to Hele–Shaw flow. Nonlinearity 16(1), 49 (2002)

    Article  MathSciNet  Google Scholar 

  10. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM (2008)

  11. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

    Article  MathSciNet  Google Scholar 

  12. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114(2), 312–338 (1994)

    Article  MathSciNet  Google Scholar 

  13. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations, vol. 33. Springer (2013)

  14. Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233 (2005)

    Article  MathSciNet  Google Scholar 

  15. Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31(6), 4330–4350 (2009)

    Article  MathSciNet  Google Scholar 

  16. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  Google Scholar 

  17. Oberman, A., Osher, S., Takei, R., Tsai, R.: Numerical methods for smooth and crystalline mean curvature flow. Commun. Math. Sci. 9, 637–662 (2011)

    Article  MathSciNet  Google Scholar 

  18. Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48(2), 308–338 (2014)

    Article  MathSciNet  Google Scholar 

  19. Papafitsoros, K., Schönlieb, C.B., Sengul, B.: Combined first and second order total variation inpainting using split Bregman. Image Process. Line 3, 112–136 (2013)

    Article  Google Scholar 

  20. Rosales, R.R., Seibold, B., Shirokoff, D., Zhou, D.: Unconditional stability for multistep ImEx schemes: theory. SIAM J. Numer. Anal. 55(5), 2336–2360 (2017)

    Article  MathSciNet  Google Scholar 

  21. Salac, D., Lu, W.: A local semi-implicit level-set method for interface motion. J. Sci. Comput. 35(2–3), 330–349 (2008)

    Article  MathSciNet  Google Scholar 

  22. Schönlieb, C.B., Bertozzi, A.: Unconditionally stable schemes for higher order inpainting. Commun. Math. Sci. 56, 413–457 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Seibold, B., Shirokoff, D., Zhou, D.: Unconditional stability for multistep ImEx schemes: Practice. J. Comput. Phys. 376, 295–321 (2019)

    Article  MathSciNet  Google Scholar 

  24. Shen, J., Chan, T.F.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    Article  MathSciNet  Google Scholar 

  25. Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998)

    Article  Google Scholar 

  26. Simoncini, V., Szyld, D.B.: Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl. 14(1), 1–59 (2007)

    Article  MathSciNet  Google Scholar 

  27. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19(1), 439–456 (2003)

    Article  MathSciNet  Google Scholar 

  28. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd Ed. Society for Industrial and Applied Mathematics (2004). https://doi.org/10.1137/1.9780898717938

  29. van der Houwen, P.J.: On the time integration of parabolic differential equations. In: Watson, G.A. (ed.) Numerical Analysis, pp. 157–168. Springer, Berlin (1982)

    Chapter  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for their constructive input.

Funding

The authors gratefully acknowledge the financial support of NSERC Canada (RGPIN 2016-04361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Chow.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code availability

Codes used during the current study are available upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, K., Ruuth, S.J. Linearly Stabilized Schemes for the Time Integration of Stiff Nonlinear PDEs. J Sci Comput 87, 95 (2021). https://doi.org/10.1007/s10915-021-01477-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01477-0

Keywords

Mathematics Subject Classification

Navigation