Skip to main content
Log in

Stabilized Times Schemes for High Accurate Finite Differences Solutions of Nonlinear Parabolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Residual Smoothing Scheme (RSS) have been introduced in Averbuch et al. (A fast and accurate multiscale scheme for parabolic equations, unpublished) as a backward Euler’s method with a simplified implicit part for the solution of parabolic problems. RSS have stability properties comparable to those of semi-implicit schemes while giving possibilities for reducing the computational cost. A similar approach was introduced independently in Costa (Time marching techniques for the nonlinear Galerkin method, 1998), Costa et al. (SIAM J Sci Comput 23(1):46–65, 2001) but from the Fourier point of view. We present here a unified framework for these schemes and propose practical implementations and extensions of the RSS schemes for the long time simulation of nonlinear parabolic problems when discretized by using high order finite differences compact schemes. Stability results are presented in the linear and the nonlinear case. Numerical simulations of 2D incompressible Navier–Stokes equations are given for illustrating the robustness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Averbuch, A., Cohen, A., Israeli, M.: A Fast and Accurate Multiscale Scheme for Parabolic Equations, Rapport LAN 1998 (unpublished)

  2. Bellavia, S., Morini, B., Porcelli, M.: New updates of incmplete LU factorizations and applications to large nonlinear systems. Optim. Methods Softw. 29, 321–340 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Artzi, M., Croisille, J.-P., Fishelov, D., Trachtenberg, S.: A pure-compact scheme for the streamfunction formulation of Navier–Stokes equations. J. Comput. Phys. 205, 640–664 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruneau, Ch.-H., Jouron, C.: An efficient scheme for solving steady incompressible Navier–Stokes equations. J. Comput. Phys. 89(2) (1990)

  5. Calgaro, C., Chehab, J.-P., Saad, Y.: Incremental incomplete LU factorizations with applications to PDES. Numer. Linear Algebra Appl. 17(5), 811–837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chehab, J.-P.: Incremental unknowns method and compact schemes. M2AN 32(1), 51–83 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Chehab, J.-P., Costa, B.: Multiparameter schemes for evolutive PDEs. Numer. Algorithms 34, 245–257 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chehab, J.-P., Costa, B.: Time explicit schemes and spatial finite differences splittings. J. Sci. Comput. 20(2), 159–189 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chehab, J.-P., Costa, B.: Multiparameter Extensions of Iterative Processes, Rapports techniques du laboratoire de mathématiques d’Orsay, RT-02-02 (2002)

  10. Costa, B.: Time Marching Techniques for the Nonlinear Galerkin Method, Preprint Series of the Institute of Applied Mathematics and Scientific Computing, PhD thesis, Bloomington, Indiana (1998)

  11. Costa, B., Dettori, L., Gottlieb, D., Temam, R.: Time marching techniques for the nonlinear Galerkin method. SIAM J. Sci. Comput. 23(1), 46–65 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diegel, A.E.: Numerical Analysis of Convex Splitting Schemes for Cahn–Hilliard and Coupled Cahn–Hilliard-Fluid-Flow Equations, PhD thesis, University of Tennessee - Knoxville, May 2015

  13. Elliott, C.M.: The Cahn-Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (eds.) Mathematical Models for Phase Change Problems. International Series of Numerical Mathematics, vol. 88, pp. 35–73, Birkhäuser, Basel (1989)

  14. Elliott, C.M., Stuart, A.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eyre, D.J.: Unconditionallly Stable One-step Scheme for Gradient Systems, June 1998 (unpublished). http://www.math.utah.edu/eyre/research/methods/stable.ps

  16. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411. ISSN 0021-9991 (1982)

  17. Goyon, O.: High-Reynolds number solutions of Navier–Stokes equations using incremental unknowns. Comput. Methods Appl. Mech. Eng. 130, 319–335 (1996)

    Article  MATH  Google Scholar 

  18. Lele, S.: Compact difference schemes with spectral like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, M., Tang, T.: A compact fourth-order finite difference scheme for unsteady viscous incompressible flows. J. Sci. Comput. 16(1), 33–45 (2001)

    Article  MathSciNet  Google Scholar 

  20. Li, Ming, Tang, Tao, Fornberg, Bengt: A compact fourth-order finite difference scheme for the steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 20(10), 1137–1151 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y., Lee, H.G., Jeong, D., Kim, J.: An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation. Comput. Math. Appl. 60, 1591–1606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peyret, R., Taylor, R.: Computational Methods for Fluid Flow, Springer Series in Computational Physics. Springer, New-York (1983)

    Book  MATH  Google Scholar 

  23. Ribot, M.: Étude théorique de schémas numériques pour les systèmes de réaction-diffusion; application à des équations paraboliques non linéaires et non locales , Thèse de Doctorat, Université Claude Bernard - Lyon 1, Décembre 2003 (in French)

  24. Ribot, M., Schatzman, M.: Stability, convergence and order of the extrapolations of the Residual Smoothing Scheme in energy norm. Conflu. Math. 3(3), 495–521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. DCDS Ser. A 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Temam, R.: Infnite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  27. Temam, R.: Navier–Stokes Equations (Revised Version). North-Holland, Amsterdam (1984)

    Google Scholar 

  28. Wang, C., Liu, J.-G.: Analysis of finite difference schemes for unsteady Navier–Stokes equations in vorticity formulation. Numer. Math. 91, 543–576 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thanks the anonymous referee for the careful reading and the constructive remarks that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Chehab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brachet, M., Chehab, JP. Stabilized Times Schemes for High Accurate Finite Differences Solutions of Nonlinear Parabolic Equations. J Sci Comput 69, 946–982 (2016). https://doi.org/10.1007/s10915-016-0223-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0223-8

Keywords

Mathematics Subject Classification

Navigation