Skip to main content
Log in

A Global-in-time Domain Decomposition Method for the Coupled Nonlinear Stokes and Darcy Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study a decoupling iterative algorithm based on domain decomposition for the time-dependent nonlinear Stokes–Darcy model, in which different time steps can be used in the flow region and in the porous medium. The coupled system is formulated as a space-time interface problem based on the interface condition for mass conservation. The nonlinear interface problem is then solved by a nested iteration approach which involves, at each Newton iteration, the solution of a linearized interface problem and, at each Krylov iteration, parallel solution of time-dependent linearized Stokes and Darcy problems. Consequently, local discretizations in time (and in space) can be used to efficiently handle multiphysics systems of coupled equations evolving at different temporal scales. Numerical results with nonconforming time grids are presented to illustrate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11, 207–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbogast, T., Gomez, M.S.M.: A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13, 331–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115, 195–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beavers, G., Joseph, D.: Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  5. Bernardi, C., Rebollo, T.C., Hecht, F., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations, M2AN Math. Model. Numer. Anal. 42, 375–410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 25, 182–185 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burman, E., Hansbo, P.: A unified stabilized method for Stokes and Darcy’s equations. J. Comput. Appl. Math. 198, 35–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, M., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, M., Mu, M., Xu, J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233, 346–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caiazzo, A., John, V., Wilbrandt, U.: On classical iterative subdomain methods for the Stokes-Darcy problem. Comput. Geosci. 18, 711–728 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition. Numer. Math. 117, 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, Y., Gunzburger, M., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comp. 83, 1617–1644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes-Darcy model with Beavers-Joseph interface boundary conditions. Commun. Math. Sci. 8, 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cesmelioglu, A., Girault, V., Rivière, B.: Time-dependent coupling of Navier–Stokes and Darcy flows. ESAIM: M2AN 47, 539–554 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cesmelioglu, A., Rivière, B.: Primal discontinuous Galerkin methods for time dependent coupled surface and subsurface flow. J. Sci. Comput. 40, 115–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin-Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49, 1064–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chidyagwai, P., Ladenheim, S., Szyld, D.B.: Constraint preconditioning for the coupled Stokes–Darcy system. SIAM J. Sci. Comput. 38, 668–690 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Engrg. 198, 3806–3820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chidyagwai, P., Rivière, B.: Numerical modelling of coupled surface and subsurface flow systems. Adv. Water Res. 33, 92–105 (2010)

    Article  Google Scholar 

  22. Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows, PhD dissertation, École Polytechnique Fédérale de Lausanne (2004)

  23. Discacciati, M., Gerardo-Giorda, L.: Optimized Schwarz methods for the Stokes–Darcy coupling. IMA J. Numer. Anal. 38, 1959–1983 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, In: F. Brezzi, A. Buffa, S. Corsaro, A. Murli (eds.) Numerical Mathematics and Advanced Applications, Springer Italia, Milan, pp. 3–20 (2003)

  26. Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Visual. Sci. 6, 93–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Discacciati, M., Quarteroni, A.: Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22, 315–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes- Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ervin, V.J., Jenkins, E.W., Lee, H.: Approximation of the Stokes-Darcy system by optimization. J. Sci. Comput. 59, 775–794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47, 929–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupling non-linear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61, 1198–1222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gander, M.J., Halpern, L., Nataf, F.: Optimal Convergence for Overlapping and Non-Overlapping Schwarz Waveform Relaxation. In Proceedings of the 11th International Conference on Domain Decomposition Methods, Lai, C-H., Bjørstad, P., Cross, M., Widlund, O. (eds.), Domain Decomposition Press, Bergen, Norway, pp. 27-36 (1999)

  33. Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41, 1643–1681 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45, 666–697 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gander, M. J., Japhet, C., Maday, Y., Nataf, F.: A new cement to glue nonconforming grids with Robin interface conditions: The finite element case, in Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, vol. 40, Springer, Berlin, pp. 259-266 (2005)

  36. Ganis, B., Vassilev, D., Wang, C., Yotov, I.: A multiscale flux basis for mortar mixed discretizations of Stokes–Darcy flows. Comput. Methods Appl. Mech. Engrg. 313, 259–278 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Galvis, J., Sarkis, M.: FETI and BDD preconditioners for Stokes–Mortar–Darcy systems. Commun. Appl. Math. Comput. Sci. 5, 1–30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Girault, V., Vassilev, D., Yotov, I.: A mortar multiscale finite element method for Stokes–Darcy flows. Numer. Math. 17, 93–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47, 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Halpern, L., Japhet, C., Szeftel, J.: Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems. SIAM J. Numer. Anal. 50(5), 2588–2611 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hoang, T.T.P., Jaffré, J., Japhet, C., Kern, M., Roberts, J.E.: Space-time domain decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal. 51(6), 3532–3559 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hoang, T.T.P., Japhet, C., Kern, M., Roberts, J.E.: Space-time domain decomposition for reduced fracture models in mixed formulation SIAM. J. Numer. Anal. 54, 288–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hoang, T.T.P., Kunwar, H., Lee, H.: Nonconforming time discretization based on Robin transmission conditions for the Stokes–Darcy system, (2021), submitted

  46. Hoppe, R.H.W., Porta, P., Vassilevski, Y.: Computational issues related to iterative coupling of subsurface and channel flows. Calcolo 44, 1–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jäger, W., Mikelíc, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sci. Norm. Super. Pisa Cl. Sci. 23, 403–465 (1996)

    MathSciNet  MATH  Google Scholar 

  48. Kwok, F.: Neumann–Neumann waveform relaxation for the time-dependent heat equation. Domain Decomposition Methods in Computational Science and Engineering XXI, Lecture Notes in Computational Science and Engineering 98, pp. 189–198, Springer-Verlag (2014)

  49. Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51, 248–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lee, H., Rife, K.: Least squares approach for the time-dependent nonlinear Stokes–Darcy flow. Comput. Math. Appl. 67, 1086–1815 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mardal, K.A., Tai, X.-C., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Márquez, A., Meddahi, S., Sayas, F.-J.: A decoupled preconditioning technique for a mixed Stokes–Darcy model. J. Sci. Comput. 57, 174–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mu, M., Zhu, X.H.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comp. 79, 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Clarendon Press, Oxford New York (1999)

    MATH  Google Scholar 

  57. Rivière, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22, 479–500 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42, 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Rui, H., Zhang, J.: A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport. Comput. Methods. Appl. Mech. Engrg. 315, 169–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. Rybak, I., Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium system. J. Comput. Phys. 272, 327–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Saffman, P.: On the boundary condition at the interface of a porous medium, Stud. Appl. Math. 1, pp. 93–101 (1971)

  62. Shan, L., Zheng, H., Layton, W.: A decoupling method with different subdomain time steps for the nonstationary Stokes–Darcy model. Numer. Methods Partial Differ. Eqns. 29, 549–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. Elsevier, North-Holland (1977)

    MATH  Google Scholar 

  64. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory. Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005)

    Book  MATH  Google Scholar 

  65. Vassilev, D., Yotov, I.: Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comput. 31, 3661–3684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  66. Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Engrg. 268, 264–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi-Thao-Phuong Hoang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T.-T.-P. Hoang’s work is partially supported by the US National Science Foundation under grant number DMS-1912626 and Auburn University’s intramural grants program.

H. Lee’s work is partially supported by the US National Science Foundation under grant number DMS-1818842.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, TTP., Lee, H. A Global-in-time Domain Decomposition Method for the Coupled Nonlinear Stokes and Darcy Flows. J Sci Comput 87, 22 (2021). https://doi.org/10.1007/s10915-021-01422-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01422-1

Keywords

Mathematics Subject Classification

Navigation