Skip to main content
Log in

POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we deal with parametrized time dependent optimal control problems governed by partial differential equations. We aim at extending the standard saddle point framework of steady constraints to time dependent cases. We provide an analysis of the well-posedness of this formulation both for parametrized scalar parabolic constraint and Stokes governing equations and we propose reduced order methods as an effective strategy to solve them. Indeed, on one hand, parametrized time dependent optimal control is a very powerful mathematical model which is able to describe several physical phenomena, on the other, it requires a huge computational effort. Reduced order methods are a suitable approach to have rapid and accurate simulations. We rely on POD–Galerkin reduction over the physical and geometrical parameters of the optimality system in a space-time formulation. Our theoretical results and our methodology are tested on two examples: a boundary time dependent optimal control for a Graetz flow and a distributed optimal control governed by time dependent Stokes equations. With these two test cases the convenience of the reduced order modelling is further extended to the field of time dependent optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The error for state, control and adjoint variables are presented in the following norms: \(\Vert y^{\mathcal N}- y_N \Vert ^2_{H^1}\), \(\Vert u^{\mathcal N}- u_N \Vert ^2_{L^2}\) and \(\Vert p^{\mathcal N}- p_N \Vert ^2_{H^1}\), respectively.

  2. The space \(L^2_0(\varOmega (\mu _2))\) is made by functions \(p \in L^2(\varOmega (\mu _2))\) which satisfy \(\displaystyle \int _{\varOmega } p \; d \varOmega = 0\). In the reduced model the aggregated basis associated to the state and adjoint pressure was built in order to satisfy this constraint, i.e. the reduced adjoint variable \(\xi _{N}\) verifies \(\displaystyle \int _{\varOmega } \xi _{N} \; d \varOmega = 0\).

  3. The error for state velocity and pressure, control and adjoint velocity and pressure variables are: \(\Vert y^{\mathcal N}- y_N \Vert ^2_{H^1}\), \(\Vert p^{\mathcal N}- p_N \Vert ^2_{L^2}\), \(\Vert u^{\mathcal N}- u_N \Vert ^2_{L^2}\), \(\Vert \lambda ^{\mathcal N}- \lambda _N \Vert ^2_{H^1}\) and \(\Vert \xi ^{\mathcal N}- \xi _N \Vert ^2_{L^2}\), respectively. We underline that in order to make the FE and ROM adjoint pressures comparable we define \(\xi ^{\mathcal N}\) := \({{\bar{\xi }}} ^{\mathcal N}- \displaystyle \int _{\varOmega } {{\bar{\xi }}} ^{\mathcal N}dx\), where \({{\bar{\xi }}} ^{\mathcal N}\) is the actual truth solution.

References

  1. Ali, S., Ballarin, F., Rozza, G.: Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations. Comput. Math. Appl. (2020). https://doi.org/10.1016/j.camwa.2020.03.019

    Article  Google Scholar 

  2. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16(4), 322–333 (1971). https://doi.org/10.1007/BF02165003

    Article  MathSciNet  MATH  Google Scholar 

  3. Bader, E., Kärcher, M., Grepl, M.A., Veroy, K.: Certified reduced basis methods for parametrized distributed elliptic optimal control problems with control constraints. SIAM J. Sci. Comput. 38(6), A3921–A3946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bader, E., Kärcher, M., Grepl, M.A., Veroy-Grepl, K.: A certified reduced basis approach for parametrized linear-quadratic optimal control problems with control constraints. IFAC-PapersOnLine 48(1), 719–720 (2015)

    Article  MATH  Google Scholar 

  5. Ballarin, F., Faggiano, E., Manzoni, A., Quarteroni, A., Rozza, G., Ippolito, S., Antona, C., Scrofani, R.: Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts. Biomech. Model. Mechanobiol. 16(4), 1373–1399 (2017). https://doi.org/10.1007/s10237-017-0893-7

    Article  MATH  Google Scholar 

  6. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136–1161 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339(9), 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005). https://doi.org/10.1017/S0962492904000212

    Article  MathSciNet  MATH  Google Scholar 

  9. Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods, vol. 166. Springer, New York (2009)

    MATH  Google Scholar 

  10. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  11. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. ESAIM Math. Model. Numer. Anal. 8(R2), 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Burkardt, J., Gunzburger, M., Lee, H.: POD and CVT-based reduced-order modeling of Navier–Stokes flows. Comput. Methods Appl. Mech. Eng. 196(1–3), 337–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chapelle, D., Gariah, A., Moireau, P., Sainte-Marie, J.: A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems: analysis, assessments and applications to parameter estimation. ESAIM Math. Model. Numer. Anal. 47(6), 1821–1843 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. De los Reyes, J.C., Tröltzsch, F.: Optimal control of the stationary Navier–Stokes equations with mixed control-state constraints. SIAM J. Control Optim. 46(2), 604–629 (2007)

  15. Dedè, L.: Optimal flow control for Navier–Stokes equations: drag minimization. Int. J. Numer. Methods Fluids 55(4), 347–366 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dedè, L.: Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput. 32(2), 997–1019 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Delfour, M.C., Zolésio, J.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, vol. 22. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  18. Eriksson, K., Johnson, C.: Error estimates and automatic time step control for nonlinear parabolic problems. I. SIAM J. Numer. Anal. 24(1), 12–23 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gerner, A.L., Veroy, K.: Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comput. 34(5), A2812–A2836 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Glas, S., Mayerhofer, A., Urban, K.: Two Ways to Treat Time in Reduced Basis Methods, pp. 1–16. Springer, Cham (2017)

    MATH  Google Scholar 

  21. Guberovic, R., Schwab, C., Stevenson, R.: Space-time variational saddle point formulations of stokes and Navier–Stokes equations. ESAIM Math. Model. Numer. Anal. 48(3), 875–894 (2014). https://doi.org/10.1051/m2an/2013124

    Article  MathSciNet  MATH  Google Scholar 

  22. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  23. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics. Springer, Milan (2015)

    MATH  Google Scholar 

  24. Hinze, M., Köster, M., Turek, S.: A hierarchical space-time solver for distributed control of the Stokes equation. Technical Report, SPP1253-16-01 (2008)

  25. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, vol. 23. Springer, Antwerp (2008)

    MATH  Google Scholar 

  26. Iapichino, L., Trenz, S., Volkwein, S.: Reduced-order multiobjective optimal control of semilinear parabolic problems. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015, pp. 389–397. Springer, Cham (2016)

    Chapter  Google Scholar 

  27. Iapichino, L., Ulbrich, S., Volkwein, S.: Multiobjective PDE-constrained optimization using the reduced-basis method. Adv. Comput. Math. 43(5), 945–972 (2017). https://doi.org/10.1007/s10444-016-9512-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Kärcher, M., Grepl, M.A.: A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM Control Optim. Calc. Var. 20(2), 416–441 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kärcher, M., Tokoutsi, Z., Grepl, M.A., Veroy, K.: Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls. J. Sci. Comput. 75(1), 276–307 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. ESAIM Math. Model. Numer. Anal. 42(1), 1–23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometrical framework for inverse problems in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29(7), 741–776 (2013). https://doi.org/10.1002/cnm.2559

    Article  MathSciNet  Google Scholar 

  32. Leugering, G., Benner, P., Engell, S., Griewank, A., Harbrecht, H., Hinze, M., Rannacher, R., Ulbrich, S.: Trends in PDE Constrained Optimization. Springer, New York (2014)

    Book  MATH  Google Scholar 

  33. Lions, J.L.: Optimal Control of System Governed by Partial Differential Equations, vol. 170. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  34. Logg, A., Mardal, K., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  35. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  36. Negri, F., Manzoni, A., Rozza, G.: Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations. Comput. Math. Appl. 69(4), 319–336 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Negri, F., Rozza, G., Manzoni, A., Quarteroni, A.: Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35(5), A2316–A2340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pošta, M., Roubíček, T.: Optimal control of Navier–Stokes equations by Oseen approximation. Comput. Math. Appl. 53(3), 569–581 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Prud’Homme, C., Rovas, D.V., Veroy, K., Machiels, L., Maday, Y., Patera, A., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124(1), 70–80 (2002)

    Article  Google Scholar 

  40. Quarteroni, A., Rozza, G., Dedè, L., Quaini, A.: Numerical approximation of a control problem for advection–diffusion processes. In: Ceragioli, F., Dontchev, A., Futura, H., Marti, K., Pandolfi, L. (eds.) IFIP Conference on System Modeling and Optimization, System Modeling and Optimization, CSMO, vol. 199, pp. 261–273. Springer, Boston (2005)

    Google Scholar 

  41. Quarteroni, A., Rozza, G., Quaini, A.: Reduced basis methods for optimal control of advection–diffusion problems. In: Advances in Numerical Mathematics, pp. 193–216. RAS and University of Houston, Moscow (2007)

  42. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, vol. 23. Springer, Berlin (2008)

    MATH  Google Scholar 

  43. RBniCS—reduced order modelling in FEniCS. http://mathlab.sissa.it/rbnics (2015)

  44. Rozza, G., Huynh, D., Manzoni, A.: Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf–sup stability constants. Numer. Math. 125(1), 115–152 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rozza, G., Manzoni, A., Negri, F.: Reduction strategies for PDE-constrained optimization problems in haemodynamics. In: ECCOMAS: Congress Proceedings, Vienna, pp. 1749–1768 (2012)

  47. Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimisation problems. SIAM J. Matrix Anal. Appl. 29(3), 752–773 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Seymen, Z.K., Yücel, H., Karasözen, B.: Distributed optimal control of time-dependent diffusion–convection–reaction equations using space-time discretization. J. Comput. Appl. Math. 261, 146–157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Stoll, M., Wathen, A.: All-at-once solution of time-dependent PDE-constrained optimization problems. Unspecified, Tech. Rep (2010)

  52. Stoll, M., Wathen, A.: All-at-once solution of time-dependent Stokes control. J. Comput. Phys. 232(1), 498–515 (2013). https://doi.org/10.1016/j.jcp.2012.08.039

    Article  MathSciNet  Google Scholar 

  53. Strazzullo, M., Ballarin, F., Mosetti, R., Rozza, G.: Model reduction for parametrized optimal control problems in environmental marine sciences and engineering. SIAM J. Sci. Comput. 40(4), B1055–B1079 (2018). https://doi.org/10.1137/17M1150591

    Article  MathSciNet  MATH  Google Scholar 

  54. Strazzullo, M., Zainib, Z., Ballarin, F., Rozza, G.: Reduced order methods for parametrized nonlinear and time dependent optimal flow control problems: towards applications in biomedical and environmental sciences. ENUMATH 2019 Proceedings (2020)

  55. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Graduate Studies in Mathematics, vol. 112. Verlag, Wiesbad (2010)

  56. Urban, K., Patera, A.T.: A new error bound for reduced basis approximation of parabolic partial differential equations. C. R. Math. 350(3–4), 203–207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yano, M.: A space-time Petrov–Galerkin certified reduced basis method: application to the Boussinesq equations. SIAM J. Sci. Comput. 36(1), A232–A266 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yano, M., Patera, A.T., Urban, K.: A space-time hp-interpolation-based certified reduced basis method for Burgers’ equation. Math. Models Methods Appl. Sci. 24(09), 1903–1935 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yilmaz, F., Karasözen, B.: An all-at-once approach for the optimal control of the unsteady Burgers equation. J. Comput. Appl. Math. 259, 771–779 (2014). Recent Advances in Applied and Computational Mathematics: ICACM-IAM-METU

  60. Zainib, Z., Ballarin, F., Rozza, G., Triverio, P., Jiménez-Juan, L., Fremes, S.: Reduced order methods for parametric optimal flow control in coronary bypass grafts, towards patient-specific data assimilation. Int. J. Numer. Methods Biomed. Eng. (2020). https://doi.org/10.1002/cnm.336

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by European Union Funding for Research and Innovation—Horizon 2020 Program—in the framework of European Research Council Executive Agency: Consolidator Grant H2020 ERC CoG 2015 AROMA-CFD Project 681447 “Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics”. We also acknowledge the INDAM-GNCS project “Advanced intrusive and non-intrusive model order reduction techniques and applications”. The computations in this work have been performed with RBniCS [43] library, developed at SISSA mathLab, which is an implementation in FEniCS [34] of several reduced order modelling techniques; we acknowledge developers and contributors to both libraries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Rozza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strazzullo, M., Ballarin, F. & Rozza, G. POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation. J Sci Comput 83, 55 (2020). https://doi.org/10.1007/s10915-020-01232-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01232-x

Keywords

Navigation