Skip to main content
Log in

Explicit Time Stepping of PDEs with Local Refinement in Space-Time

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Traditional numerical time stepping allows variable node densities in space, but not also in time. Having the ability to utilize nodes that are placed irregularly in the space-time domain leads to many advantages when solving time dependent problems. In this paper we introduce a new method utilizing the radial basis function generated finite difference approach in order to accomplish this goal. Benefits include improved stability conditions and the option to use small time steps only in select spatial regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Although similar in many respects, RBF-FD (in its form known as PHS + poly, see Sections 5.1.5 and 5.1.7 in [16]) and MLS have also significant differences, as analyzed in [3]. The last paragraph in the Conclusions of this paper notes: “Overall, PHS + poly has performed superior than MLS. It can not only achieve at least the same accuracy than MLS, but can also overcome the harmful Runge’s phenomenon for any polynomial degree. This result potentially opens new opportunities for PHS + poly in areas of application where MLS is the preferred choice”.

  2. A code for producing this figure can be downloaded from https://github.com/DylanAbrahamsen/RBF-TD.

  3. We focus here on AB-FD4 schemes (rather than on RK-FD4 schemes, with internal stages) since these can be displayed as space-time stencils.

References

  1. Abedi, R., Petracovici, B., Haber, R.: A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance. Comput. Methods Appl. Mech. Eng. 195(25–28), 3247–3273 (2006)

    Article  MathSciNet  Google Scholar 

  2. Almquist, M., Mehlin, M.: Multilevel local time-stepping methods of Runge–Kutta-type for wave equations. SIAM J. Sci. Comput. 39(5), A2020–A2048 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bayona, V.: Comparison of moving least squares and RBF + poly for interpolation and derivative approximation. J. Sci. Comput. 81(1), 486–512 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bayona, V., Flyer, N., Fornberg, B.: On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries. J. Comput. Phys. 380, 378–399 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bayona, V., Flyer, N., Fornberg, B., Barnett, G.: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257–273 (2017)

    Article  MathSciNet  Google Scholar 

  6. Candes, E., Romberg, J.: L1-magic: Recovery of sparse signals via convex programming, vol. 4. www.acm.caltech.edu/l1magic/downloads/l1magic.pdf (2005)

  7. Demirel, A., Niegemann, J., Busch, K., Hochbruck, M.: Efficient multiple time-stepping algorithms of higher order. J. Comput. Phys. 285, 133–148 (2015)

    Article  MathSciNet  Google Scholar 

  8. Descombes, S., Lanteri, S., Moya, L.: Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell’s equations. J. Comput. Phys. 56(1), 190–218 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Diaz, J., Grote, M.: Multi-level explicit local time-stepping methods for second-order wave equations. Comput. Methods Appl. Mech. Eng. 291, 240–265 (2015)

    Article  MathSciNet  Google Scholar 

  10. Driscoll, T.A., Heryudono, A.R.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53(6), 927–939 (2007)

    Article  MathSciNet  Google Scholar 

  11. Fasshauer, G.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishers, Singapore (2007)

    Book  Google Scholar 

  12. Flyer, N., Barnett, G., Wicker, L.: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations. J. Comput. Phys. 316, 39–62 (2016)

    Article  MathSciNet  Google Scholar 

  13. Flyer, N., Fornberg, B., Barnett, G., Bayona, V.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)

    Article  MathSciNet  Google Scholar 

  14. Flyer, N., Lehto, E., Blaise, S., Wright, G., St-Cyr, A.: A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere. J. Comput. Phys. 231, 4078–4095 (2012)

    Article  MathSciNet  Google Scholar 

  15. Fornberg, B., Flyer, N.: Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput. Math. Appl. 69, 531–544 (2015)

    Article  MathSciNet  Google Scholar 

  16. Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences. SIAM, Philadelphia (2015)

    Book  Google Scholar 

  17. Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. Acta Numerica 24, 215–258 (2015)

    Article  MathSciNet  Google Scholar 

  18. Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270–2285 (2011)

    Article  MathSciNet  Google Scholar 

  19. Gopalakrishnan, J., Schöberl, J., Wintersteiger, C.: Mapped tent pitching schemes for hyperbolic systems. SIAM J. Sci. Comput. 39(6), B1043–B1063 (2017)

    Article  MathSciNet  Google Scholar 

  20. Hamaidi, M., Naji, A., Charafi, A.: Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations. Eng. Anal. Bound. Elem. 67, 152–163 (2016)

    Article  MathSciNet  Google Scholar 

  21. Haq, S., Siraj-Ul-Islam, Uddin, M.: A mesh-free method for the numerical solution of the KdV-Burgers equation. Appl. Mathe. Model. 33, 3442–3449 (2008)

    Article  MathSciNet  Google Scholar 

  22. Li, Z., Mao, X.Z.: Global multiquadric collocation method for groundwater contaminant source identification. Environ. Model. Softw. 26(12), 1611–1621 (2011)

    Article  Google Scholar 

  23. Li, Z., Mao, X.Z., Li, T.S., Zhang, S.: Estimation of river pollution source using the space-time radial basis collocation method. Adv. Water Resour. 88, 68–79 (2016)

    Article  Google Scholar 

  24. Netuzhylov, H., Zilian, A.: Space-time meshfree collocation method: methodology and application to initial-boundary value problems. Int. J. Numer. Meth. Eng. 80(3), 355–380 (2009)

    Article  MathSciNet  Google Scholar 

  25. Shan, Y., Shu, C., Lu, Z.: Application of local MQ-DQ method to solve 3D incompressible viscous flows with curved boundary. Comput. Model. Eng. Sci. 25, 99–113 (2008)

    Google Scholar 

  26. Uddin, M., Ali, H.: The space-time kernel-based numerical method for Burgers’ equations. Mathematics 6(10), 212 (2018)

    Article  Google Scholar 

  27. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  28. Wright, G., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212, 99–123 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan Abrahamsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahamsen, D., Fornberg, B. Explicit Time Stepping of PDEs with Local Refinement in Space-Time. J Sci Comput 81, 1945–1962 (2019). https://doi.org/10.1007/s10915-019-01065-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01065-3

Keywords

Mathematics Subject Classification

Navigation