Skip to main content

Radial Basis Function-Generated Finite Differences: A Mesh-Free Method for Computational Geosciences

  • Living reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

Radial basis function-generated finite differences (RBF-FD) is a mesh-free method for numerically solving partial differential equations that emerged in the last decade and have shown rapid growth in the last few years. From a practical standpoint, RBF-FD sprouted out of global RBF methods, which have shown exceptional numerical qualities in terms of accuracy and time stability for numerically solving PDEs, but are not practical when scaled to very large problem sizes because of their computational cost and memory requirements. RBF-FD bypass these issues by using local approximations for derivatives instead of global ones. Matrices in the RBF-FD methodology go from being completely full to 99 % empty. Of course, the sacrifice is the exchange of spectral accuracy from the global RBF methods for high-order algebraic convergence of RBF-FD, assuming smooth data. However, since natural processes are almost never infinitely differentiable, little is lost and much gained in terms of memory and runtime. This chapter provides a survey of a group of topics relevant to using RBF-FD for a variety of problems that arise in the geosciences. Particular emphasis is given to problems in spherical geometries, both on surfaces and within a volume. Applications discussed include nonlinear shallow water equations on a sphere, reaction–diffusion equations, global electric circuit, and mantle convection in a spherical shell. The results from the last three of these applications are new and have not been presented before for RBF-FD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ascher UM, Ruuth SJ, Wetton BTR (1995) Implicit-explicit methods for time-dependent partial differential equations. SIAM J Numer Anal 32:797–823

    Article  MathSciNet  MATH  Google Scholar 

  • Backus GE (1966) Potentials for tangent tensor fields on spheroids. Arch Ration Mech Anal 22:210–252

    Article  MathSciNet  MATH  Google Scholar 

  • Blaise S, St-Cyr A (2012) A dynamic hp-adaptive discontinuous Galerkin method for shallow water flows on the sphere with application to a global tsunami simulation. Mon Wea Rev 140(3):978–996

    Article  Google Scholar 

  • Bochner S (1933) Monotine Functionen, Stieltjes Integrale und Harmonische Analyse. Math Ann 108:378–410

    Article  MathSciNet  Google Scholar 

  • Bollig E, Flyer N, Erlebacher G (2012) Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs. J Comput Phys 231:7133–7151

    Article  MathSciNet  Google Scholar 

  • Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover, New York

    Google Scholar 

  • Collatz L (1960) The numerical treatment of differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Driscoll TA, Fornberg B (2002) Interpolation in the limit of increasingly flat radial basis functions. Comput Math Appl 43:413–422

    Article  MathSciNet  MATH  Google Scholar 

  • Driscoll TA, Heryudono A (2007) Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput Math Appl 53:927–939

    Article  MathSciNet  MATH  Google Scholar 

  • Fasshauer GE (2007) Meshfree approximation methods with MATLAB. Interdisciplinary mathematical sciences, vol 6. World Scientific, Singapore

    Google Scholar 

  • Flyer N, Lehto E, Blaise S, Wright GB, St-Cyr A (2012) A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. J Comput Phys 231:4078–4095

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B (1996) A practical guide to pseudospectral methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Fornberg B, Lehto E (2011) Stabilization of RBF-generated finite difference methods for convective PDEs. J Comput Phys 230:2270–2285

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Piret C (2007) A stable algorithm for flat radial basis functions on a sphere. SIAM J Sci Comput 30:60–80

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Wright G (2004) Stable computation of multiquadric interpolants for all values of the shape parameter. Comput Math Appl 48:853–867

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Zuev J (2007) The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput Math Appl 54:379–398

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Driscoll TA, Wright G, Charles R (2002) Observations on the behavior of radial basis functions near boundaries. Comput Math Appl 43:473–490

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Wright G, Larsson E (2004) Some observations regarding interpolants in the limit of flat radial basis functions. Comput Math Appl 47:37–55

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Larsson E, Flyer N (2011) Stable computations with Gaussian radial basis functions. SIAM J Sci Comput 33(2):869–892

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Lehto E, Powell C (2013) Stable calculation of Gaussian-based RBF-FD stencils. Comput Math Appl 65:627–637

    Article  MathSciNet  Google Scholar 

  • Fox L (1947) Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations. Proc R Soc A 190:31–59

    Article  MATH  Google Scholar 

  • Fuselier EJ, Wright GB (2013) A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J Sci Comput 1–31. doi:10.1007/s10915-013-9688-x, http://dx.doi.org/10.1007/s10915-013-9688-x

  • Galewsky J, Scott RK, Polvani LM (2004) An initial-value problem for testing numerical models of the global shallow-water equations. Tellus 56A:429–440

    Article  Google Scholar 

  • Gottlieb D, Orszag SA (1977) Numerical analysis of spectral methods. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Gupta MM (1991) High accuracy solutions of incompressible Navier-Stokes equations. J Comput Phys 93:343–359

    Article  MathSciNet  MATH  Google Scholar 

  • Harder H (1998) Phase transitions and the three-dimensional planform of thermal convection in the Martian mantle. J Geophys Res 103:16,775–16,797

    Article  Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915

    Article  Google Scholar 

  • Hesthaven JS, Gottlieb S, Gottlieb D (2007) Spectral methods for time-dependent problems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kameyama MC, Kageyama A, Sato T (2008) Multigrid-based simulation code for mantle convection in spherical shell using Yin-Yang grid. Phys Earth Planet Inter 171:19–32

    Article  Google Scholar 

  • Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103:16–42

    Article  MathSciNet  MATH  Google Scholar 

  • Li M, Tang T, Fornberg B (1995) A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations. Int J Numer Methods Fluids 20:1137–1151

    Article  MathSciNet  MATH  Google Scholar 

  • Madych WR, Nelson SA (1992) Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J Approx Theory 70:94–114

    Article  MathSciNet  MATH  Google Scholar 

  • Mairhuber JC (1956) On Haar’s theorem concerning Chebyshev approximation problems having unique solutions. Proc Am Math Soc 7(4):609–615

    MathSciNet  MATH  Google Scholar 

  • Micchelli CA (1986) Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr Approx 2:11–22

    Article  MathSciNet  MATH  Google Scholar 

  • Peyret R (2002) Spectral methods for incompressible viscous flow. Springer, New York

    Book  MATH  Google Scholar 

  • Piret C (2012) The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J Comput Phys 231:4662–4675

    Article  MathSciNet  MATH  Google Scholar 

  • Powell MJD (1992) The theory of radial basis function approximation in 1990. In: Light W (ed) Advances in numerical analysis, vol II: wavelets, subdivision algorithms and radial functions. Oxford University Press, Oxford, pp 105–210

    Google Scholar 

  • Ratcliff JT, Schubert G, Zebib A (1996) Steady tetrahedral and cubic patterns of spherical shell convection with temperature-dependent viscosity. J Geophys Res 101:473–484

    Google Scholar 

  • Schaback R (1995) Error estimates and condition numbers for radial basis function interpolants. Adv Comput Math 3:251–264

    Article  MathSciNet  MATH  Google Scholar 

  • Schaback R (2005) Multivariate interpolation by polynomials and radial basis functions. Constr Approx 21:293–317

    Article  MathSciNet  MATH  Google Scholar 

  • Schoenberg IJ (1938) Metric spaces and completely monotone functions. Ann Math 39:811–841

    Article  MathSciNet  Google Scholar 

  • Spotz WF, Taylor MA, Swarztrauber PN (1998) Fast shallow water equation solvers in latitude-longitude coordinates. J Comput Phys 145:432–444

    Article  MathSciNet  MATH  Google Scholar 

  • St-Cyr A, Jablonowski C, Dennis JM, Tufo HM, Thomas SJ (2008) A comparison of two shallow-water models with nonconforming adaptive grids. Mon Weather Rev 136:1898–1922

    Article  Google Scholar 

  • Stemmer K, Harder H, Hansen U (2006) A new method to simulate convection with strongly temperature-dependent and pressure-dependent viscosity in spherical shell. Phys Earth Planet Inter 157:223–249

    Article  Google Scholar 

  • Taylor M, Tribbia J, Iskandarani M (1997) The spectral element method for the shallow water equations on the sphere. J Comput Phys 130:92–108

    Article  MATH  Google Scholar 

  • Trefethen LN (2000) Spectral methods in MATLAB. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Turing A (1952) The chemical basis of morphogenesis. Philos Trans R Soc B 237:37–52

    Article  Google Scholar 

  • van der Vorst H (1992) BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644. doi:10.1137/0913035

    Article  MATH  Google Scholar 

  • Varea C, Aragon J, Barrio R (1999) Turing patterns on a sphere. Phys Rev E 60:4588–4592

    Article  Google Scholar 

  • Wilson CTR (1920) Investigations on lightning discharges and on the electric field of thunderstorms. Philos Trans R Soc Lond A 221:73–115

    Article  Google Scholar 

  • Wilson CTR (1929) Some thundercloud problems. J Frankl Inst 208:1–12

    Article  Google Scholar 

  • Womersley RS, Sloan IH (2003/2007) Interpolation and cubature on the sphere. Website, http://web.maths.unsw.edu.au/~rsw/Sphere/

  • Wright GB, Fornberg B (2006) Scattered node compact finite difference-type formulas generated from radial basis functions. J Comput Phys 212:99–123

    Article  MathSciNet  MATH  Google Scholar 

  • Wright GB, Flyer N, Yuen DA (2010) A hybrid radial basis function – pseudospectral method for thermal convection in a 3D spherical shell. Geophys Geochem Geosyst 11(7):Q07,003

    Article  Google Scholar 

  • Yoon J (2001) Spectral approximation orders of radial basis function interpolation on the Sobolev space. SIAM J Math Anal 33(4):946–958

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida M, Kageyama A (2004) Application of the Ying-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell. Geophys Res Lett 31:L12,609

    Article  Google Scholar 

  • Zhai S, Feng X, He Y (2013) A family of fourth-order and sixth-order compact difference schemes for the three-dimensional Poisson equation. J Sci Comput 54:97–120

    Article  MathSciNet  MATH  Google Scholar 

  • Zhong S, McNamara A, Tan E, Moresi L, Gurnis M (2008) A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem Geophys Geosyst 9:Q10,017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Flyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Flyer, N., Wright, G.B., Fornberg, B. (2013). Radial Basis Function-Generated Finite Differences: A Mesh-Free Method for Computational Geosciences. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics