Skip to main content
Log in

An HDG Method for the Time-dependent Drift–Diffusion Model of Semiconductor Devices

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a hybridizable discontinuous Galerkin (HDG) finite element method to approximate the solution of the time dependent drift–diffusion problem. This system involves a nonlinear convection diffusion equation for the electron concentration u coupled to a linear Poisson problem for the electric potential \(\phi \). The non-linearity in this system is the product of the \(\nabla \phi \) with u. An improper choice of a numerical scheme can reduce the convergence rate. To obtain optimal HDG error estimates for \(\phi \), u and their gradients, we utilize two different HDG schemes to discretize the nonlinear convection diffusion equation and the Poisson equation. We prove optimal order error estimates for the semidiscrete problem. We also present numerical experiments to support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baltes, H.P., Popovic, R.S.: Integrated semiconductor magnetic field sensors. Proc. IEEE 74(8), 1107–1132 (1986)

    Article  Google Scholar 

  2. Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulation. SIAM J. Sci. Stat. Comput. 4(3), 416–435 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Vignal, M.-H.: Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM J. Numer. Anal. 52(4), 1666–1691 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessemoulin-Chatard, M.: A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme. Numer. Math. 121(4), 637–670 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biler, P., Dolbeault, J.: Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift-diffusion systems. Ann. Henri Poincaré 1(3), 461–472 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23(9), 1189–1209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bin, T., Chen, M., Xie, Y., Zhang, L., Eisenberg, B., Benzhuo, L.: A parallel finite element simulator for ion transport through three-dimensional ion channel systems. J. Comput. Chem. 34(24), 2065–2078 (2013)

    Article  Google Scholar 

  8. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezzi, F., Marini, L.D., Pietra, P.: Two-dimensional exponential fitting and applications to drift–diffusion models. SIAM J. Numer. Anal. 26(6), 1342–1355 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burgler, J.F., Bank, R.E., Fichtner, W., Smith, R.K.: A new discretization scheme for the semiconductor current continuity equations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(5), 479–489 (1989)

    Article  Google Scholar 

  11. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comp. 86(306), 1643–1670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift–diffusion equations and convergence analysis. M2AN Math. Model. Numer. Anal. 37(2), 319–338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chainais-Hillairet, C., Peng, Y.-J.: Convergence of a finite-volume scheme for the drift-diffusion equations in 1D. IMA J. Numer. Anal. 23(1), 81–108 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chainais-Hillairet, C., Peng, Y.-J.: Finite volume approximation for degenerate drift–diffusion system in several space dimensions. Math. Models Methods Appl. Sci. 14(3), 461–481 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, G., Cockburn, B., Singler, J.R., Zhang, Y.: Superconvergent interpolatory HDG methods for reaction diffusion equations. Part I: HDG-k methods (In preparation)

  16. Chen, G., Singler, J., Zhang, Y.: An HDG method For dirichlet boundary control of convection dominated diffusion PDEs. SIAM J. Numer. Anal

  17. Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection–diffusion equations. IMA J. Numer. Anal. 36(1), 437–462 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection–diffusion equations. Part I: general nonconforming meshes. IMA J. Numer. Anal. 32(4), 1267–1293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection–diffusion equations. Part II: semimatching nonconforming meshes. Math. Comp. 83(285), 87–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 165–186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365–398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cockburn, B., Fu, G.: Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by \(M\)-decompositions. IMA J. Numer. Anal. 38(2), 566–604 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cockburn, B., Fu, G., Qiu, W.: A note on the devising of superconvergent HDG methods for Stokes flow by \(M\)-decompositions. IMA J. Numer. Anal. 37(2), 730–749 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Cockburn, B., Fu, G., Sayas, F.J.: Superconvergence by \(M\)-decompositions. Part I: general theory for HDG methods for diffusion. Math. Comp. 86(306), 1609–1641 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comp. 80(274), 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comp. 79(271), 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  29. De Mari, A.: An accurate numerical steady-state one-dimensional solution of the pn junction. Solid-State Electr. 11(1), 33–58 (1968)

    Article  Google Scholar 

  30. Eisenberg, B., Hyon, Y., Liu, C.: Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133(10), 104104 (2010)

    Article  Google Scholar 

  31. Flavell, A., Machen, M., Eisenberg, B., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson–Nernst–Planck equations. J. Comput. Electr. 13(1), 235–249 (2014)

    Article  Google Scholar 

  32. Frank, F., Knabner, P.: Convergence analysis of a BDF2/mixed finite element discretization of a Darcy–Nernst–Planck–Poisson system. ESAIM Math. Model. Numer. Anal. 51(5), 1883–1902 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guosheng, F., Qiu, W., Zhang, W.: An analysis of HDG methods for convection–dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 49(1), 225–256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gajewski, H.: On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z. Angew. Math. Mech. 65(2), 101–108 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113(1), 12–35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gao, H., He, D.: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations. J. Sci. Comput. 72(3), 1269–1289 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gao, H., Sun, P.: A linearized local conservative mixed finite element method for Poisson-Nernst-Planck equations. J. Sci. Comput. 77, 793 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gong, W., Hu, W., Mateos, M., Singler, J.R., Zhang, Y.: An HDG method for tangential Dirichlet boundary control of stokes equations I: high regularity, Numerische Mathematik

  39. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electr. Dev. 11(10), 455–465 (1964)

    Article  Google Scholar 

  40. He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson–Nernst–Planck system. Appl. Math. Comput. 287(288), 214–223 (2016)

    MathSciNet  MATH  Google Scholar 

  41. He, M., Sun, P.: Error analysis of mixed finite element method for Poisson–Nernst–Planck system. Numer. Methods Partial Differ. Equ. 33(6), 1924–1948 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. He, M., Sun, P.: Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling. J. Comput. Appl. Math. 341, 61–79 (2018)

    Article  MathSciNet  Google Scholar 

  43. Horng, T.-L., Lin, T.-C., Liu, C., Eisenberg, B.: Pnp equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116(37), 11422–11441 (2012)

    Article  Google Scholar 

  44. Hsieh, C.-Y., Hyon, Y.K., Lee, H., Lin, T.-C., Liu, C.: Transport of charged particles: entropy production and maximum dissipation principle. J. Math. Anal. Appl. 422(1), 309–336 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jerome, J.W.: Consistency of semiconductor modeling: an existence/stability analysis for the stationary Van Roosbroeck system. SIAM J. Appl. Math. 45(4), 565–590 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jerome, J.W.: Analysis of Charge Transport. A Mathematical Study of Semiconductor Devices. Springer, Berlin (1996)

    Book  Google Scholar 

  47. Jerome, J.W.: Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices. Springer, Berlin (2012)

    Google Scholar 

  48. Lehrenfeld, C.: Hybrid Discontinuous Galerkin methods for solving incompressible flow problems, PhD Thesis (2010)

  49. Li, B., Xie, X.: Analysis of a family of HDG methods for second order elliptic problems. J. Comput. Appl. Math. 307, 37–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268, 363–376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Liu, Y.X., Shu, C.-W.: Analysis of the local discontinuous Galerkin method for the drift–diffusion model of semiconductor devices. Sci. China Math. 59(1), 115–140 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lu, B., Holst, M.J., McCammon, J.A., Zhou, Y.C.: Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: finite element solutions. J. Comput. Phys. 229(19), 6979–6994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Markowich, P.A.: The Stationary Semiconductor Device Equations. Computational Microelectronics. Springer, Vienna (1986)

    Book  Google Scholar 

  54. Meng, D., Zheng, B., Lin, G., Sushko, M.L.: Numerical solution of 3D Poisson–Nernst–Planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment. Commun. Comput. Phys. 16(5), 1298–1322 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mirzadeh, M., Gibou, F.: A conservative discretization of the Poisson–Nernst–Planck equations on adaptive Cartesian grids. J. Comput. Phys. 274, 633–653 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mock, M.S.: An initial value problem from semiconductor device theory. SIAM J. Math. Anal. 5, 597–612 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  57. Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65(1), 327–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comp. 87(309), 69–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Qiu, W., Shi, K.: An HDG method for convection diffusion equation. J. Sci. Comput. 66(1), 346–357 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Schmuck, M.: Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Models Methods Appl. Sci. 19(6), 993–1015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Sun, Y., Sun, P., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson–Nernst–Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53(1), 206–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wu, J., Srinivasan, V., Xu, J., Wang, C.Y.: Newton–Krylov-multigrid algorithms for battery simulation. J. Electrochem. Soc. 149(10), A1342–A1348 (2002)

    Article  Google Scholar 

  65. Xu, S., Chen, M., Majd, S., Yue, X., Liu, C.: Modeling and simulating asymmetrical conductance changes in gramicidin pores. Mol. Based Math. Biol. 2(1), 34–55 (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

G. Chen is supported by National natural science Foundation of China (NSFC) under Grant Number 11801063 and China Postdoctoral Science Foundation under Grant Number 2018M633339. The research of P. B. Monk and Y. Zhang is partially supported by the US National Science Foundation (NSF) under Grant Number DMS-1619904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Monk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we give a proof for (17a) and (17b). The proof of (17c) is similar and we do not provide details.

1.1 Error Equations

We start be deriving equations satisfied by standard projections [see (12)] of the exact solution.

Lemma 6.1

Let \(({\varvec{q}}, u)\) be components of the solution of (2), then we have

holds for all \(({\varvec{r}}_1, w_1, \mu _1)\in {\varvec{Q}}_h\times V_h\times {\widehat{V}}_{h}(0)\).

Proof

By the definition of and in (14c) and (14e) respectively, the projections and integrating by parts, we get

where we have also used (2a). In addition,

Hence, again using the projections, we have

Since, using (2c), \(\nabla \cdot {\varvec{q}} = \nabla \cdot ({\varvec{p}} u) - u_t\), then we have

$$\begin{aligned} (\nabla \cdot {\varvec{q}}, w_1)_{{\mathcal {T}}_h} = -(u_t, w_1)_{{\mathcal {T}}_h} + \langle {\varvec{p}}\cdot {\varvec{n}} u, w_1 \rangle _{\partial {\mathcal {T}}_h} - ({\varvec{p}}u, \nabla u)_{{\mathcal {T}}_h}. \end{aligned}$$

This implies that

and completes the proof of the lemma. \(\square \)

To simplify notation, we define

$$\begin{aligned} \eta _h^{{\varvec{q}}}:={\varvec{\varPi }}_k^o{\varvec{q}}-{\varvec{q}}_{Ih},\ \ \ \eta _h^{u}:=\varPi _{k+1}^ou-u_{Ih},\ \ \ \eta _h^{{\widehat{u}}}:=\varPi _k^{\partial }u-{\widehat{u}}_{Ih}. \end{aligned}$$

We then subtract the equation in Lemma 6.1 from (15) to get the following lemma.

Lemma 6.2

Under the conditions of Lemma 6.1, we have the error equation

(26)

holds for all \(({\varvec{r}}_1, w_1, \mu _1)\in {\varvec{Q}}_h\times V_h\times {\widehat{V}}_{h}(0)\).

1.2 Main Error Estimate

We can now prove (17b).

Lemma 6.3

For h small enough, we have the error estimates

$$\begin{aligned} \Vert {{\varvec{q}}}-{{\varvec{q}}}_{Ih} \Vert _{\mathcal {T}_h}+\Vert h_K^{-1/2}(\varPi _k^{\partial }u_{Ih}-{\widehat{u}}_{Ih} )\Vert _{\partial \mathcal {T}_h}\le Ch^{k+1}|u|_{k+2}. \end{aligned}$$

Proof

We take \(({\varvec{r}}_1, w_1, \mu _1) = (\eta _h^{{\varvec{q}}},\eta _h^u,\eta _h^{{\widehat{u}}})\) in (26). First

Next,

For h small enough, we obtain

On the other hand,

Next, we estimate \(\{R_i\}_{i=1}^4\) term by term. For the first term \(R_1\), Lemma 2.7 gives

$$\begin{aligned} R_1&\le Ch^{k+1}|{\varvec{q}}|_{k+1}\Vert h_K^{-1/2}(\eta _h^u-\eta _h^{{\widehat{u}}})\Vert _{\partial \mathcal {T}_h},\\&\le Ch^{k+1}|{\varvec{q}}|_{k+1}\left( \Vert \eta _h^{{\varvec{q}}}\Vert _{\mathcal {T}_h}+\Vert h_K^{-1/2}(\varPi _k^{\partial }\eta _h^u-\eta _h^{{\widehat{u}}})\Vert _{\partial \mathcal {T}_h}\right) . \end{aligned}$$

For the term \(R_2\), by Lemmas 2.9 and 2.7 to get

$$\begin{aligned} R_2&\le Ch^{k+2}|u|_{k+2}\Vert \nabla \eta _h^u\Vert _{\mathcal {T}_h}\\&\le Ch^{k+2}|u|_{k+2}\left( \Vert \eta _h^{{\varvec{p}}}\Vert _{\mathcal {T}_h}+\Vert h_K^{-1/2}(\varPi _k^{\partial }\eta _h^u-\eta _h^{{\widehat{u}}})\Vert _{\partial \mathcal {T}_h}\right) . \end{aligned}$$

For the term \(R_3\), we use Lemma 2.7 to get

$$\begin{aligned} R_3&= \langle {\varvec{p}}\cdot {\varvec{n}} (\varPi _k^{\partial } u-u), \eta _h^u-\eta _h^{{\widehat{u}}} \rangle _{\partial \mathcal {T}_h}\\&\le Ch^{k+1}|u|_{k+1}\Vert h_K^{-1/2}(\eta _h^u-\eta _h^{{\widehat{u}}})\Vert _{\partial \mathcal {T}_h}\\&\le Ch^{k+1}|u|_{k+1}\left( \Vert \eta _h^{{\varvec{p}}}\Vert _{\mathcal {T}_h}+\Vert h_K^{-1/2}(\varPi _k^{\partial }\eta _h^u-\eta _h^{{\widehat{u}}})\Vert _{\partial \mathcal {T}_h}\right) . \end{aligned}$$

Moreover, for the last term we have

$$\begin{aligned} R_4 \le Ch^{k+1}|u|_{k+1} \Vert h_K^{-1/2}(\varPi _k^{\partial }\eta _h^u-\eta _h^{{\widehat{u}}}) \Vert _{\partial \mathcal {T}_h}. \end{aligned}$$

Use the Cauchy-Schwarz inequality for the above estimates of \(\{R_i\}_{i=1}^4\), we get

$$\begin{aligned} \Vert \eta _h^{{{\varvec{q}}}}\Vert _{\mathcal {T}_h}+\Vert h_K^{-1/2}(\varPi _k^{\partial }\eta _h^{u}-\eta _h^{{\widehat{u}}} )\Vert _{\partial \mathcal {T}_h} \le Ch^{k+1}|u|_{k+2}. \end{aligned}$$

Use of the triangle inequality and estimates (13a) and (13b) completes the estimate. \(\square \)

1.3 Duality Arguments

To obtain a \(L^2\) norm estimate of \(\Vert \eta _h^{u}\Vert _{{\mathcal {T}}_h}\), we use the dual problem (8) with corresponding a priori estimate (9). To perform the error analysis, the main difficulty is to deal with the nonlinearity. We define a new form which is related to the trilinear form :

(27)

Next, we give a property of the operators and . We omit the proof since it is very straightforward.

Lemma 6.4

For all \((u_h ,{\widehat{u}}_h, w_1,\mu _1)\in V_h\times {\widehat{V}}_{h}(0)\times V_h\times {\widehat{V}}_{h}(0)\), we have

Similarly to Lemma 6.1, we have the following lemma.

Lemma 6.5

Assuming M is chosen sufficiently large, let \(({\varPhi },{\varvec{\varPsi }})\) solve (8) then we have the equation

holds for all \(({\varvec{r}}_1, w_1, \mu _1)\in {\varvec{Q}}_h\times V_h\times {\widehat{V}}_{h}(0)\).

With the above preparation we can now derive estimate (17a).

Theorem 6.6

Let u and \(u_{Ih}\) be the solutions of (2) and (15), respectively. If h is small enough, then we have the error estimate

$$\begin{aligned} \Vert u-u_{Ih}\Vert _{\mathcal {T}_h}\le Ch^{k+2}\Vert u\Vert _{k+2}. \end{aligned}$$

Proof

We take \(({\varvec{r}}_1,w_1, \mu _1)=(\eta _h^{{\varvec{q}}},-\eta _h^u,-\eta _h^{{\widehat{u}}})\) and \(\varTheta =-\eta _h^u\) in Lemma 6.5 to get

By Lemma 6.4 we have

This implies

On the other hand, we have

Comparing the above two equations, we get

$$\begin{aligned} \Vert \eta _h^u\Vert ^2_{\mathcal {T}_h}&= -\langle {\varvec{\varPi }}_k^o{\varvec{q}}\cdot {\varvec{n}}-{\varvec{q}}\cdot {\varvec{n}},\varPi _{k+1}^o\varPhi -\varPi _k^{\partial }\varPhi \rangle _{\partial \mathcal {T}_h} -\langle h_K^{-1}(\varPi _{k+1}^ou-u),\varPi _k^{\partial }\varPi _{k+1}^o\varPhi \\&\quad -\varPi _k^{\partial }\varPhi \rangle _{\partial \mathcal {T}_h} -\,({\varvec{p}} (\varPi _{k+1}^ou-u), \nabla \varPi _{k+1}^o\varPhi )_{\mathcal {T}_h}\\&\quad +\langle {\varvec{p}}\cdot {\varvec{n}} (\varPi _k^{\partial } u-u), \varPi _{k+1}^o\varPhi - \varPi _{k}^\partial \varPhi \rangle _{\partial \mathcal {T}_h}\\&\quad +\langle {\varvec{p}}\cdot {\varvec{n}} (\eta _h^u-\eta _h^{{\widehat{u}}}), \varPi _{k+1}^o\varPhi -\varPi _{k}^{\partial }\varPhi \rangle _{\partial \mathcal {T}_h}\\&\quad -\,\langle {\varvec{\varPi }}_k^o{\varvec{\varPsi }}\cdot {\varvec{n}}-{\varvec{\varPsi }}\cdot {\varvec{n}},\eta _h^{{\widehat{u}}}-\eta _h^u \rangle _{\partial \mathcal {T}_h}- \langle h_K^{-1}(\varPi _{k+1}^o\varPhi -\varPhi ),\varPi _k^{\partial }\eta _h^u-\eta _h^{{\widehat{u}}}\rangle _{\partial \mathcal {T}_h}\\&\quad +\,( {\varvec{p}} (\varPi _{k+1}^o\varPhi -\varPhi ), \nabla \eta _h^u)_{\mathcal {T}_h} -\langle {\varvec{p}}\cdot {\varvec{n}} (\varPi _k^{\partial } \varPhi -\varPhi ), \eta _h^u - \eta _h^{{\widehat{u}}} \rangle _{\partial \mathcal {T}_h}\\&\quad +\,(\nabla \cdot {\varvec{p}} (\varPi _{k+1}^o\varPhi -\varPhi ),\eta _h^u)_{\mathcal {T}_h}\nonumber \\&=\sum _{i=1}^{10}S_i. \end{aligned}$$

We estimate \(\{S_i\}_{i=1}^{10}\) as follows (we omit some of the details):

$$\begin{aligned} S_1&=- \langle {\varvec{\varPi }}_k^o{\varvec{q}}\cdot {\varvec{n}}-{\varvec{q}}\cdot {\varvec{n}},\varPhi -\varPi _{k+1}^{o}\varPhi \rangle _{\partial \mathcal {T}_h} \le Ch^{k+2}|{\varvec{q}}|_{k+1}\Vert \varPhi \Vert _{2},\\ S_2&= - \langle h_K^{-1}(\varPi _{k+1}^ou-u),\varPi _{k+1}^{o}\varPhi -\varPhi \rangle _{\partial \mathcal {T}_h}\le Ch^{k+2} |u|_{k+2}\Vert \varPhi \Vert _{2},\\ S_3&=-({\varvec{p}} (\varPi _{k+1}^ou-u), \nabla \varPi _{k+1}^o\varPhi )_{\mathcal {T}_h} \le Ch^{k+2}|u|_{k+2}|\varPhi |_1,\\ S_4&=\langle {\varvec{p}}\cdot {\varvec{n}}(\varPi _k^{\partial }u-u),\varPi _{k+1}^o\varPhi -\varPhi \rangle _{\partial \mathcal {T}_h}\le Ch^{k+2}|u|_{k+1}\Vert \varPhi \Vert _{2},\\ S_5&\le C\Vert h_K^{-1/2}(\eta _h^u-\eta _h^{{\widehat{u}}})\Vert _{\partial \mathcal {T}_h}h|\varPhi |_1\le Ch^{k+2}|u|_{k+2}|\varPhi |_1,\\ S_6&\le Ch\Vert h_K^{-1/2}(\eta _h^u-\eta _h^{{\widehat{u}}})\Vert _{\partial \mathcal {T}_h}\Vert {\varvec{\varPsi }}\Vert _1\le Ch^{k+2 }\Vert {\varvec{\varPsi }}\Vert _{1},\\ S_7&\le Ch\Vert h_K^{-1/2}(\eta _h^u-\eta _h^{{\widehat{u}}})\Vert _{\partial \mathcal {T}_h}\Vert {\varvec{\varPhi }}\Vert _{2}\le Ch^{k+2}|u|_{k+2}\Vert {\varvec{\varPhi }}\Vert _{2},\\ S_8&\le Ch^{2}\Vert \varPhi \Vert _{2}\Vert \nabla \eta _h^u\Vert _{\mathcal {T}_h}\le Ch^{k+2}\Vert \varPhi \Vert _{2}|u|_{k+2},\\ S_9&= - \langle {\varvec{p}}\cdot {\varvec{n}}(\varPi _k^{\partial }\varPhi -\varPhi ),\eta _h^u-\eta _h^{{\widehat{u}}}\rangle _{\partial {\mathcal {T}}_h}\le Ch^{k+2}|\varPhi |_1|u|_{k+2},\\ S_{10}&\le Ch^{2}\Vert \varPhi \Vert _{2}\Vert \eta _h^u\Vert _{\mathcal {T}_h}. \end{aligned}$$

Summing the above estimates, we get

$$\begin{aligned} \Vert \eta _h^u\Vert ^2_{\mathcal {T}_h}\le Ch^{k+2}\Vert u\Vert _{k+2} \Vert \eta _h^u\Vert _{\mathcal {T}_h} +Ch^2 \Vert \eta _h^u\Vert ^2_{\mathcal {T}_h}. \end{aligned}$$

Let h be small enough, we have

$$\begin{aligned} \Vert \eta _h^u\Vert _{\mathcal {T}_h}\le Ch^{k+2}\Vert u\Vert _{k+2}. \end{aligned}$$

A simple application of the triangle inequality finishes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Monk, P. & Zhang, Y. An HDG Method for the Time-dependent Drift–Diffusion Model of Semiconductor Devices. J Sci Comput 80, 420–443 (2019). https://doi.org/10.1007/s10915-019-00945-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00945-y

Keywords

Navigation