Skip to main content
Log in

A conservative finite difference scheme for Poisson–Nernst–Planck equations

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A macroscopic model to describe the dynamics of ion transport in ion channels is the Poisson–Nernst–Planck (PNP) equations. In this paper, we develop a finite-difference method for solving PNP equations, second-order accurate in both space and time. We use the physical parameters specifically suited toward the modeling of ion channels. We present a simple iterative scheme to solve the system of nonlinear equations resulting from discretizing the equations implicitly in time, which is demonstrated to converge in a few iterations. We place emphasis on ensuring numerical methods to have the same physical properties that the PNP equations themselves also possess, namely conservation of total ions, correct rates of energy dissipation, and positivity of the ion concentrations. We describe in detail an approach to derive a finite-difference method that preserves the total concentration of ions exactly in time. In addition, we find a set of sufficient conditions on the step sizes of the numerical method that assure positivity of the ion concentrations. Further, we illustrate that, using realistic values of the physical parameters, the conservation property is critical in obtaining correct numerical solutions over long time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bank, R.E., Coughran, W.M. Jr., Fichtner, W., Grosse, E.H., Rose, D.J., Smith, R.K.: Transient simulation of silicon devices and circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. CAD-4, 436–451 (1985)

    Article  Google Scholar 

  2. Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques. Modél. Math. Anal. Numér. 12(3), 237–245 (1978)

    MATH  MathSciNet  Google Scholar 

  3. Cagni, E., Remondini, D., Mesirca, P., Castellani, G., Verondini, E., Bersani, F.: Effects of exogenous electromagnetic fields on a simplified ion channel model. J. Biol. Phys. 33, 183–194 (2007)

    Article  Google Scholar 

  4. Celledoni, E., Grimm, V., McLachlan, R., McLaren, D., O’Neale, D., Owren, B., Quispel, G.: Preserving energy resp. dissipation in numerical pdes using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chiu, E., Wang, Q., Hu, R., Jameson, A.: A conservative mesh-free scheme and generalized framework for conservation laws. SIAM J. Sci. Comput. 34, A2896–A2916 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Domene, C., Vemparala, S., Furini, S., Sharp, K., Klein, M.: The role of conformation in ion permeation in a k+ channel. J. Am. Chem. Soc. 130 (2008)

  7. Doyle, D., Cabral, J.M., Pfuetzner, R., Kuo J. G, A., Cohen, S., Chait, B., MacKinnon, R.: The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280 (1998)

  8. Eisenberg, R.: Ion channels in biological membranes: electrostatic analysis of a natural nanotube. Contemp. Phys. 39, 447 (1998)

    Article  Google Scholar 

  9. Fisher, T., Carpenter, M., Nordström, J., Yamaleev, N., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2012)

    Article  Google Scholar 

  10. Gardner, C., Jones, J.: Electrodiffusion model simulation of the potassium channel. J. Theor. Biol. 291, 10–13 (2011)

    Article  Google Scholar 

  11. Gardner, C., Nonner, W., Eisenberg, R.: Electrodiffusion model simulation of ionic channels: 1d simulations. J. Comput. Electron. 3, 25–31 (2004)

    Article  Google Scholar 

  12. Gillespie, D.: Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. Biophys. J. 94, 1169–1984 (2008)

    Article  Google Scholar 

  13. Gillespie, D., Nonner, W., Eisenberg, R.: Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. J. Phys. Condens. Matter 14, 12,129–12,145 (2002)

    Article  Google Scholar 

  14. Ham, F., Lien, F., Strong, A.: A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 177, 117–133 (2002)

    Article  MATH  Google Scholar 

  15. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182 (1965)

    Article  MATH  Google Scholar 

  16. Hof, B., Veldman, A.: Mass, momentum and energy conserving (mamec) discretizations on general grids for the compressible Euler and shallow water equations. J. Comput. Phys. 231, 4723–4744 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Horng, T., Lin, T., Liu, C., Eisenberg, B.: PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116, 422–441 (2012)

    Article  Google Scholar 

  18. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  19. Hyon, Y., Eisenberg, R., Liu, C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kajishima, T.: Finite-difference method for convective terms using non-uniform grid. Trans. Jpn. Soc. Mech. Eng. C 65-633(Part B), 1607–1612 (1999)

    Article  Google Scholar 

  21. Lee, C., Lee, H., Hyon, Y., Lin, T., Liu, C.: New Poisson–Boltzmann type equations: one-dimensional solutions. Nonlinearity 24, 431 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lopreore, C., Bartol, T., Coggan, J., Keller, D., Sosinsky, G., Ellisman, M., Sejnowski, T.: Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of ranvier. Biophys. J. 95, 2624–2635 (2008)

    Article  Google Scholar 

  24. Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  25. Morinishi, Y., Lund, T., Vasilyev, O., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143(1), 90–124 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Morinishi, Y., Vasilyev, O., Ogi, T.: Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations. J. Comput. Phys. 197, 686–710 (2004)

    Article  MATH  Google Scholar 

  27. Nanninga, P.M.: A computational neuron model based on Poisson–Nernst–Planck theory. In: Mercer, G.N., Roberts, A.J. (eds.) Proceedings of the 14th Biennial Computational Techniques and Applications Conference, CTAC-2008, ANZIAM J, vol. 50, pp. C46–C59 (2008)

    Google Scholar 

  28. Neuen, C.: A multiscale approach to the Poisson–Nernst–Planck equation. Diploma Thesis, University of Bonn, Germany (2010)

  29. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Teorell, T.: Transport processes and electrical phenomena in ionic membranes. Prog. Biophys. Mol. Biol. 3, 305 (1953)

    Google Scholar 

  31. Vasilyev, O.V.: High order finite difference schemes on non-uniform meshes with good conservation properties. J. Comput. Phys. 157(2), 746–761 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wei, G.W., Zheng, Q., Chen, Z., Xia, K.: Variational multiscale models for charge transport. SIAM Rev. 54, 699–754 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11(4), 1395–1414 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

X. Li is partially supported by the NSF grant DMS-0914923 and C. Liu is partially supported by the NSF grants DMS-1109107, DMS-1216938 and DMS-1159937.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flavell, A., Machen, M., Eisenberg, B. et al. A conservative finite difference scheme for Poisson–Nernst–Planck equations. J Comput Electron 13, 235–249 (2014). https://doi.org/10.1007/s10825-013-0506-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0506-3

Keywords

Navigation