Skip to main content
Log in

A Stable and Convergent Hodge Decomposition Method for Fluid–Solid Interaction

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Fluid–solid interaction has been a challenging subject due to their strong nonlinearity and multidisciplinary nature. Many of the numerical methods for solving FSI problems have struggled with non-convergence and numerical instability. In spite of comprehensive studies, it has still been a challenge to develop a method that guarantees both convergence and stability. Our discussion in this work is restricted to the interaction of viscous incompressible fluid flow and a rigid body. We take the monolithic approach by Gibou and Min (J Comput Phys 231:3245–3263, 2012) that results in an augmented Hodge projection. The projection updates not only the fluid vector field but also the solid velocities. We derive the equivalence between the augmented Hodge projection and the Poisson equation with non-local Robin boundary condition. We prove the existence, uniqueness, and regularity for the weak solution of the Poisson equation, through which the Hodge projection is shown to be unique and orthogonal. We also show the stability of the projection in the sense that the projection does not increase the total kinetic energy of the fluid or the solid. Finally, we discuss a numerical method as a discrete analogue to the Hodge projection, then we show that the unique decomposition and orthogonality also hold in the discrete setting. As one of our main results, we prove that the numerical solution is convergent with at least first-order accuracy. We carry out numerical experiments in two and three dimensions, which validate our analysis and arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Badia, S., Nobile, F., Vergara, C.: Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 198, 2768–2784 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badia, S., Quaini, A., Quarteroni, A.: Modular versus non-modular preconditioners for fluid? Structure systems with large addedmass effect. Comput. Methods Appl. Mech. Eng. 197, 4216–4232 (2008)

    Article  MATH  Google Scholar 

  3. Borazjani, I., Ge, L., Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16), 7587–7620 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bridson, R.: Fluid Simulation for Computer Graphics, p. 02482. A K Pters Ltd., Wellesley (2008)

    Book  Google Scholar 

  5. Bukač, M., Yotov, I., Zunino, P.: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Part. Differ. Equ. 31, 1054–1100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Causin, P., Gerbeau, J., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194, 42–44 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chakrabarti, S.K. (ed.): Numerical Models in Fluid Structure Interaction, Advances in Fluid Mechanics, vol. 42, WIT Press, Ashurst (2005)

  8. Chen, Z.Q., Williams, R.J., Zhao, Z.: A Sobolev inequality and Neumann heat kernel estimate for unbounded domains. Math. Res. Lett. 1, 177–184 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Degroote, J., Bruggeman, P., Haelterman, R., Vierendeels, J.: Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86, 2224–2234 (2008)

    Article  Google Scholar 

  10. Dowell, E.H., Hall, K.C.: Modeling of fluid–structure interaction. Ann. Rev. Fluid Mech. 33, 445–490 (2001)

    Article  MATH  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, New York (1998)

    Google Scholar 

  12. Farhat, C., van der Zee, K., Geuzaine, P.: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Eng. 195, 1973–2001 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fernández, M.: Incremental displacement-correction schemes for incompressible fluid–structure interaction. Numer. Math. 123, 21–65 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fernández, M., Mullaert, J.: Convergence and error analysis for a class of splitting schemes in incompressible fluid-structure interaction. IMA J. Numer. Anal. 36, 1748–1782 (2016)

    Article  MathSciNet  Google Scholar 

  15. Förster, C., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196(7), 1278–1293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gee, M., Küttler, U., Wall, W.: Truly monolithic algebraic multigrid for fluid–structure interaction. Int. J. Numer. Methods Eng. 85, 987–1016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gibou, F., Min, C.: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions. J. Comput. Phys. 231, 3245–3263 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second order, 1998th edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  19. Grétarsson, J.T., Kwatra, N., Fedkiw, R.: Numerically stable fluid–structure interactions between compressible flow and solid structures. J. Comput. Phys. 230, 3062–3084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heil, M., Hazel, A., Boyle, J.: Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43, 91–101 (2008)

    Article  MATH  Google Scholar 

  23. Hübner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid–structure interaction using space–time finite elements. Comput. Methods Appl. Mech. Eng. 193, 2087–2104 (2004)

    Article  MATH  Google Scholar 

  24. Michler, C., Hulshoff, S.J., van Brummelen, E.H., de Borst, R.: A monolithic approach to fluid–structure interaction. Comput. Fluids 33, 839–848 (2004)

    Article  MATH  Google Scholar 

  25. Morand, H.J.P., Ohayon, R.: Fluid–Structure Interaction: Applied Numerical Methods. Wiley, New York (1995)

    MATH  Google Scholar 

  26. Muha, B., Čanić, S.: Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207, 919–968 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nobile, F., Vergara, C.: An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30, 731–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., Oñate, E.: A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46, 883–899 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Walhorn, E., Kölke, A., Hübner, B., Dinkler, D.: Fluid–structure coupling within a monolithic model involving free surface flows. Comput. Struct. 83, 2100–2111 (2005)

    Article  Google Scholar 

  31. Xiu, D., Karniadakis, G.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172, 658–684 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express deep gratitude to the reviewer for his/her helpful comments. G. Yoon was supported by National Institute for Mathematical Sciences (NIMS), and C. Min was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827) and the Korea government (MSIT) (2017R1A2B1006688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chohong Min.

Additional information

C. Min was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827). S. Kim is supported by NRF-20151009350.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, G., Min, C. & Kim, S. A Stable and Convergent Hodge Decomposition Method for Fluid–Solid Interaction. J Sci Comput 76, 727–758 (2018). https://doi.org/10.1007/s10915-017-0638-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0638-x

Keywords

Mathematics Subject Classification

Navigation