Skip to main content
Log in

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a class of high order conservative semi-Lagrangian (SL) discontinuous Galerkin methods for solving multi-dimensional linear transport equations. The methods rely on a characteristic Galerkin weak formulation, leading to \(L^2\) stable discretizations for linear problems. Unlike many existing SL methods, the high order accuracy and mass conservation of the proposed methods are realized in a non-splitting manner. Thus, the detrimental splitting error, which is known to significantly contaminate long term transport simulations, will be not incurred. One key ingredient in the scheme formulation, borrowed from CSLAM (Lauritzen et al. in J Comput Phys 229(5):1401–1424, 2010), is the use of Green’s theorem which allows us to convert volume integrals into a set of line integrals. The resulting line integrals are much easier to approximate with high order accuracy, hence facilitating the implementation. Another novel ingredient is the construction of quadratic curves in approximating sides of upstream cell, leading to quadratic-curved quadrilateral upstream cells. Formal third order accuracy is obtained by such a construction. The desired positivity-preserving property is further attained by incorporating a high order bound-preserving filter. To assess the performance of the proposed methods, we test and compare the numerical schemes with a variety of configurations for solving several benchmark transport problems with both smooth and nonsmooth solutions. The efficiency and efficacy are numerically verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ayuso, B., Carrillo, J., Shu, C.-W.: Discontinuous Galerkin methods for the one-dimensional Vlasov–Poisson system. KRM 4, 955–989 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blossey, P., Durran, D.: Selective monotonicity preservation in scalar advection. J. Comput. Phys. 227(10), 5160–5183 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (2008)

    MATH  Google Scholar 

  4. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  5. Celia, M., Russell, T., Herrera, I., Ewing, R.: An Eulerian–Lagrangian localized adjoint method for the advection–diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)

    Article  Google Scholar 

  6. Childs, P., Morton, K.: Characteristic Galerkin methods for scalar conservation laws in one dimension. SIAM J. Numer. Anal. 27(3), 553–594 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Christlieb, A., Guo, W., Morton, M., Qiu, J.-M.: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7–27 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Lin, S., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn, B.: Shu. C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection \(p^1\)-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Douglas Jr., J., Russell, T.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Erath, C., Lauritzen, P.H., Tufo, H.M.: On mass conservation in high-order high-resolution rigorous remapping schemes on the sphere. Mon. Weather Rev. 141(6), 2128–2133 (2013)

    Article  Google Scholar 

  16. Giraldo, F.X.: The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147(1), 114–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Güçlü, Y., Christlieb, A., Hitchon, W.: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system. J. Comput. Phys. 270, 711–752 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guo, W., Nair, R., Qiu, J.-M.: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere. Mon. Weather Rev. 142(1), 457–475 (2013)

    Article  Google Scholar 

  19. Guo, W., Nair, R., Zhong, X.: An efficient WENO limiter for discontinuous Galerkin transport scheme on the cubed sphere. Int. J. Numer. Methods Fluids 81, 3–21 (2015)

    Article  MathSciNet  Google Scholar 

  20. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Heath, R., Gamba, I., Morrison, P., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231(4), 1140–1174 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Herrera, I., Ewing, R., Celia, M., Russell, T.: Eulerian–Lagrangian localized adjoint method: the theoretical framework. Numer. Methods Part. Differ. Equ. 9(4), 431–457 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lamarque, J.-F., Kinnison, D., Hess, P., Vitt, F.: Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes. J. Geophys. Res. Atmos. 113(D12) (2008). doi:10.1029/2007JD009277

  25. Lauritzen, P., Nair, R., Ullrich, P.: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys. 229(5), 1401–1424 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lee, D., Lowrie, R., Petersen, M., Ringler, T., Hecht, M.: A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes. J. Comput. Phys. 324, 289–302 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  27. LeVeque, R.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33(2), 627–665 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Morgenstern, O., Giorgetta, M.A., Shibata, K., Eyring, V., Waugh, D.W., Shepherd, T.G., Akiyoshi, H., Austin, J., Baumgaertner, A.J.G., Bekki, S., Braesicke, P., Brhl, C., Chipperfield, M.P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S.M., Garny, H., Gettelman, A., Hardiman, S.C., Hegglin, M.I., Jckel, P., Kinnison, D.E., Lamarque, J.-F., Mancini,E., Manzini, E., Marchand, M., Michou, M., Nakamura, T., Nielsen, J.E., Pitari, D.O.G., Plummer, D.A., Rozanov, E., Scinocca, J.F., Smale, D., Teyssdre, H., Toohey, M., Tian, W., Yamashita, Y.: Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. J. Geophys. Res. Atmos. 115(D3) (2010). doi:10.1029/2009JD013728

  29. Morton, K., Priestley, A., Suli, E.: Stability of the Lagrange–Galerkin method with non-exact integration. RAIRO Modél. Math. Anal. Numér. 22, 625–653 (2010)

  30. Nair, R., Thomas, S., Loft, R.: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Weather Rev. 133(4), 814–828 (2005)

    Article  Google Scholar 

  31. Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10(4), 979–1000 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973)

  34. Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rossmanith, J., Seal, D.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230, 6203–6232 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  37. Staniforth, A., Cote, J.: Semi-Lagrangian integration schemes for atmospheric models: a review. Mon. Weather Rev. 119(9), 2206–2223 (1991)

    Article  Google Scholar 

  38. White, J., Dongarra, J.: High-performance high-resolution semi-Lagrangian tracer transport on a sphere. J. Comput. Phys. 230(17), 6778–6799 (2011)

    Article  MATH  Google Scholar 

  39. Williamson, D.L.: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Jpn. 85, 241–269 (2007)

    Article  Google Scholar 

  40. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhong, X., Shu, C.-W.: A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 232(1), 397–415 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Ram Nair from National Center for Atmospheric Research for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Mei Qiu.

Additional information

Dedicated to Prof. Chi-Wang Shu on his 60th birthday.

W. Guo: Research is supported by NSF Grant NSF-DMS-1620047. J.-M. Qiu: Research supported by NSF Grant NSF-DMS-1522777 and Air Force Office of Scientific Computing FA9550-12-0318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Guo, W. & Qiu, JM. A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations. J Sci Comput 73, 514–542 (2017). https://doi.org/10.1007/s10915-017-0554-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0554-0

Keywords

Navigation