Skip to main content
Log in

Comparison of Semi-Lagrangian Discontinuous Galerkin Schemes for Linear and Nonlinear Transport Simulations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

Transport problems arise across diverse fields of science and engineering. Semi-Lagrangian (SL) discontinuous Galerkin (DG) methods are a class of high-order deterministic transport solvers that enjoy advantages of both the SL approach and the DG spatial discretization. In this paper, we review existing SLDG methods to date and compare numerically their performance. In particular, we make a comparison between the splitting and non-splitting SLDG methods for multi-dimensional transport simulations. Through extensive numerical results, we offer a practical guide for choosing optimal SLDG solvers for linear and nonlinear transport simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Arber, T., Vann, R.: A critical comparison of Eulerian-grid-based Vlasov solvers. J. Comput. Phys. 180(1), 339–357 (2002)

    MATH  Google Scholar 

  2. Arnold, D., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Nume. Anal. 39(5), 1749–1779 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Bell, J., Colella, P., Glaz, H.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Blossey, P., Durran, D.: Selective monotonicity preservation in scalar advection. J. Comput. Phys. 227(10), 5160–5183 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bochev, P., Moe, S., Peterson, K., Ridzal, D.: A conservative, optimization-based semi-Lagrangian spectral element method for passive tracer transport. In: COUPLED PROBLEMS 2015, VI International Conference on Computational Methods for Coupled Problems in Science and Engineering, Barcelona, Spain, pp. 23–34 (2015)

  6. Bradley, A.M., Bosler, P.A., Guba, O., Taylor, M.A., Barnett, G.A.: Communication-efficient property preservation in tracer transport. SIAM J. Sci. Comput. 41(3), C161–C193 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Cai, X., Guo, W., Qiu, J.-M.: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations. J. Sci. Comput. 73(2/3), 514–542 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Cai, X., Guo, W., Qiu, J.-M.: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting. J. Comput. Phys. 354, 529–551 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Cai, X., Guo, W., Qiu, J.-M.: A high order semi-Lagrangian discontinuous Galerkin method for the two-dimensional incompressible Euler equations and the guiding center Vlasov model without operator splitting. J. Sci. Comput. 79(2), 1111–1134 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Cai, X., Qiu, J., Qiu, J.-M.: A conservative semi-Lagrangian HWENO method for the Vlasov equation. J. Comput. Phys. 323, 95–114 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Celia, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water Resources 13(4), 187–206 (1990)

    Google Scholar 

  12. Cheng, C.-Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22(3), 330–351 (1976)

    Google Scholar 

  13. Christlieb, A., Guo, W., Morton, M., Qiu, J.-M.: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7–27 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229(6), 1927–1953 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Crouseilles, N., Mehrenberger, M., Vecil, F.: Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson. In: ESAIM: Proceedings, vol. 32, pp. 211–230. EDP Sciences, (2011)

  16. W. E., Shu, C.-W.: A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow. J. Comput. Phys. 110(1), 39–46 (1994)

  17. Einkemmer, L.: A study on conserving invariants of the Vlasov equation in semi-Lagrangian computer simulations. J. Plasma Phys. 83(2), 705830203 (2017)

  18. Einkemmer, L.: A performance comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions. J. Comput. Phys. 376, 937–951 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Erath, C., Nair, R.D.: A conservative multi-tracer transport scheme for spectral-element spherical grids. J. Comput. Phys. 256, 118–134 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Ewing, R.E., Wang, H.: Eulerian-Lagrangian localized adjoint methods for linear advection or advection-reaction equations and their convergence analysis. Comput. Mech. 12(1/2), 97–121 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247–266 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172(1), 166–187 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. Comptes Rendus de l’Académie des Sci.-Ser. I-Math. 332(3), 265–270 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Frenod, E., Hirstoaga, S.A., Lutz, M., Sonnendrücker, E.: Long time behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field. Commun. Comput. Phys. 18(2), 263–296 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Güçlü, Y., Christlieb, A.J., Hitchon, W.N.: Arbitrarily high order convected scheme solution of the Vlasov-Poisson system. J. Comput. Phys. 270, 711–752 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Guo, W., Nair, R., Qiu, J.-M.: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere. Monthly Weather Rev. 142(1), 457–475 (2013)

    Google Scholar 

  27. Guo, Y., Xiong, T., Shi, Y.: A maximum-principle-satisfying high-order finite volume compact WENO scheme for scalar conservation laws with applications in incompressible flows. J. Sci. Comput. 65(1), 83–109 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer Science & Business Media (2006)

  29. Harris, L., Lauritzen, P., Mittal, R.: A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid. J. Comput. Phys. 230(4), 1215–1237 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Herrera, I., Ewing, R.E., Celia, M.A., Russell, T.F.: Eulerian-Lagrangian localized adjoint method: the theoretical framework. Numer. Methods Partial Differ. Equ. 9(4), 431–457 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Heumann, H., Hiptmair, R., Li, K., Xu, J.: Fully discrete semi-Lagrangian methods for advection of differential forms. BIT Numer. Math. 52(4), 981–1007 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Huang, C.-S., Arbogast, T., Hung, C.-H.: A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws. J. Comput. Phys. 322, 559–585 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Lauritzen, P., Nair, R., Ullrich, P.: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys. 229(5), 1401–1424 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Lee, D., Lowrie, R., Petersen, M., Ringler, T., Hecht, M.: A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes. J. Comput. Phys. 324, 289–302 (2016)

    MathSciNet  MATH  Google Scholar 

  35. LeVeque, R.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33(2), 627–665 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Lin, S., Rood, R.: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Q. J. R. Meteorol. Soc. 123(544), 2477–2498 (1997)

    Google Scholar 

  37. Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160(2), 577–596 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Minion, M.L., Brown, D.L.: Performance of under-resolved two-dimensional incompressible flow simulations, ii. J. Comput. Phys. 138(2), 734–765 (1997)

    MATH  Google Scholar 

  39. Qiu, J.-M.: High-order mass-conservative semi-Lagrangian methods for transport problems. In: Handbook of Numerical Analysis, vol. 17, pp. 353–382. Elsevier (2016)

  40. Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130–1149 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Qiu, J.-M., Russo, G.: A high order multi-dimensional characteristic tracing strategy for the Vlasov-Poisson system. J. Sci. Comput. 71(1), 414–434 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230(4), 863–889 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10(4), 979–1000 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov-Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Shoucri, M.M.: A two-level implicit scheme for the numerical solution of the linearized vorticity equation. Int. J. Numer. Methods Eng. 17(10), 1525–1538 (1981)

    MATH  Google Scholar 

  48. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)

    MathSciNet  MATH  Google Scholar 

  49. Umeda, T.: A conservative and non-oscillatory scheme for Vlasov code simulations. Earth Planets Space 60(7), 773–779 (2008)

    Google Scholar 

  50. Wang, H., Dahle, H., Ewing, R., Espedal, M., Sharpley, R., Man, S.: An ELLAM scheme for advection-diffusion equations in two dimensions. SIAM J. Sci. Comput. 20(6), 2160–2194 (1999)

    MathSciNet  MATH  Google Scholar 

  51. Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618–639 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Xiong, T., Russo, G., Qiu, J.-M.: High order multi-dimensional characteristics tracing for the incompressible Euler equation and the guiding-center Vlasov equation. J. Sci. Comput. 77(1), 263–282 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Xiu, D., Karniadakis, G.: A semi-Lagrangian high-order method for Navier-Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)

    MathSciNet  MATH  Google Scholar 

  54. Xu, C.: Stabilization methods for spectral element computations of incompressible flows. J. Sci. Comput. 27(1/2/3), 495–505 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Yang, C., Filbet, F.: Conservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations. J. Comput. Phys. 279, 18–36 (2014)

    MathSciNet  MATH  Google Scholar 

  56. Yang, Y., Cai, X., Qiu, J.-M.: Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension. Math. Comput. 89(325), 2113–2139 (2020)

    MathSciNet  MATH  Google Scholar 

  57. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5/6/7), 262–268 (1990)

    MathSciNet  Google Scholar 

  58. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    MathSciNet  MATH  Google Scholar 

  59. Zhong, X., Shu, C.-W.: A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 232(1), 397–415 (2013)

    MathSciNet  Google Scholar 

  60. Zhu, H., Qiu, J., Qiu, J.-M.: An h-adaptive RKDG method for the Vlasov-Poisson system. J. Sci. Comput. 69(3), 1346–1365 (2016)

    MathSciNet  MATH  Google Scholar 

  61. Zhu, H., Qiu, J., Qiu, J.-M.: An h-adaptive RKDG method for the two-dimensional incompressible Euler equations and the guiding center Vlasov model. J. Sci. Comput. 73(2/3), 1316–1337 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

W. Guo: Research is supported by NSF grant NSF-DMS-1830838.

J.-M. Qiu: Research is supported by NSF grant NSF-DMS-1522777 and NSF-DMS-1818924, Air Force Office of Scientific Computing FA9550-18-1-0257.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Guo, W. & Qiu, JM. Comparison of Semi-Lagrangian Discontinuous Galerkin Schemes for Linear and Nonlinear Transport Simulations. Commun. Appl. Math. Comput. 4, 3–33 (2022). https://doi.org/10.1007/s42967-020-00088-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00088-0

Keywords

Mathematics Subject Classification

Navigation