Skip to main content
Log in

An Efficient Semi-implicit Solver for Direct Numerical Simulation of Compressible Flows at All Speeds

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a semi-implicit algorithm for time-accurate simulation of compressible shock-free flows, with special reference to wall-bounded flows. The method is based on partial linearization of the convective fluxes in such a way to suppress, or at least mitigate the acoustic time step limitation. Together with replacement of the total energy equation with the entropy transport equation, this approach avoids the inversion of block-banded matrices involved in classical methods, which is replaced by much less demanding inversion of standard banded matrices. The method is extended to deal with implicit integration of viscous terms and to multiple space dimensions through approximate factorization, and used as a building block of a semi-implicit Runge–Kutta scheme which guarantees third-order of accuracy in time (Nikitin in Int J Numer Methods Fluids 51:221–233, 2006). Numerical experiments are carried out for isotropic turbulence, plane channel flow, and flow in a square duct. All available data support higher computational efficiency than existing methods, and saving of computer resources ranging from 85% under low-subsonic flow conditions (down to \(M_0 \sim 0.1\)), to about 50% in supersonic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nikitin, N.: Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 51, 221–233 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lee, M., Moser, R.: Direct simulation of turbulent channel flow layer up to Re\(_{\tau } = 5200\). J. Fluid Mech. 774, 395–415 (2015)

    Article  Google Scholar 

  3. Lele, S.: Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26, 211–254 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Poinsot, T., Trouve, A., Veynante, D., Candel, S., Esposito, E.: Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265–292 (1987)

    Article  Google Scholar 

  5. Colonius, T., Lele, S.K.: Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40, 345–416 (2004)

    Article  Google Scholar 

  6. Modesti, D., Pirozzoli, S.: Reynolds and Mach number effects in compressible turbulent channel flow. Int. J. Heat Fluid Flow 59, 33–49 (2016)

    Article  Google Scholar 

  7. Beam, R., Warming, R.: An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. J. Comput. Phys. 22, 87–110 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beam, R., Warming, R.: An implicit factored scheme for the compressible Navier–Stokes equations. AIAA J. 16, 393–402 (1978)

    Article  MATH  Google Scholar 

  9. Douglas, J.: On the numerical integration of \(\frac{\partial ^2u}{\partial x^2}+ \frac{\partial ^2 u}{\partial y^2}=\frac{\partial u}{\partial t}\) by implicit methods. J. Soc. Ind. Appl. Math. 3, 42–65 (1955)

    Article  MathSciNet  Google Scholar 

  10. Isaacson, E., Keller, H.: Analysis of Numerical Methods. Courier Corporation, Mineola (1994)

    MATH  Google Scholar 

  11. Batista, M.: A cyclic block-tridiagonal solver. Adv. Eng. Softw. 37, 69–74 (2006)

    Article  Google Scholar 

  12. Pulliam, T., Chaussee, D.: A diagonal form of an implicit approximate-factorization algorithm. J. Comput. Phys. 39, 347–363 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, Oxford (2007)

    Google Scholar 

  14. Pulliam, T.: Solution methods in computational fluid dynamics. In: von Karman Institute for Fluid Mechanics Lecture Series, Numerical Techniques for Viscous Flow Computations in Turbomachinery (1986)

  15. Buning, P., Jespersen, D., Thomas, H., Chan, W., Slotnick, J., Krist, S., Renze, K.: OVERFLOW User’s Manual version 1.8f, Unpublished NASA Report (1998)

  16. Cinnella, C.C.P.: High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows. J. Comput. Phys. 326, 1–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martín, M., Candler, G.: A parallel implicit method for the direct numerical simulation of wall-bounded compressible turbulence. J. Comput. Phys. 215, 153–171 (2006)

    Article  MATH  Google Scholar 

  18. Turkel, E.: Review of preconditioning methods for fluid dynamics. Appl. Numer. Math. 12, 257–284 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Turkel, E.: Preconditioning techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 31, 385–416 (1999)

    Article  MathSciNet  Google Scholar 

  20. Venkateswaran, S., Merkle, C.: Dual time stepping and preconditioning for unsteady computations. AIAA Paper 1995-0078 (1995)

  21. Pandya, S., Venkateswaran, S., Pulliam, T.: Implementation of preconditioned dual-time procedures in overflow. AIAA paper 2003-0072 (2003)

  22. Palma, P.D., Tullio, M.D., Pascazio, G., Napolitano, M.: An immersed-boundary method for compressible viscous flows. Comput. Fluids 35, 693–702 (2006)

    Article  MATH  Google Scholar 

  23. Jin, S.: Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci. Comp. 21(2), 441–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Degond, P., Tang, M.: All speed scheme for the low mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10(1), 1–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haack, J., Jin, S., Liu, J.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12(04), 955–980 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Casulli, V., Greenspan, D.: Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids 4, 1001–1012 (1984)

    Article  MATH  Google Scholar 

  27. Pierce, C.: Progress-variable approach for large-eddy simulation of turbulent combustion. Ph.D. thesis, Citeseer (2001)

  28. Wall, C., Pierce, C., Moin, P.: A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comput. Phys. 181, 545–563 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moureau, V., Bérat, C., Pitsch, H.: An efficient semi-implicit compressible solver for large-eddy simulations. J. Comput. Phys. 226, 1256–1270 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Spalart, P., Moser, R., Rogers, M.: Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sesterhenn, J.: A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes. Comput. Fluids 30, 37–67 (2000)

    Article  MATH  Google Scholar 

  33. Honein, A., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201, 531–545 (2004)

    Article  MATH  Google Scholar 

  34. Salas, M., Iollo, A.: Entropy jump across an inviscid shock wave. Theor. Comput. Fluid Dyn. 8, 365–375 (1996)

    Article  MATH  Google Scholar 

  35. Kovásznay, L.: Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657–674 (1953)

    Article  MATH  Google Scholar 

  36. Steger, J.: Coefficient matrices for implicit finite difference solution of the inviscid fluid conservation law equations. Comput. Methods Appl. Mech. Eng. 13, 175–188 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  37. Barth, T., Steger, J.: A fast efficient implicit scheme for the gasdynamics equations using a matrix reduction technique. AIAA paper 1985-0085 (1985)

  38. Orlandi, P.: Fluid Flow Phenomena: A Numerical Toolkit. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  39. Vichnevetsky, R., Bowles, J.B.: Fourier Analysis of Numerical Approximations of Hyperbolic Equations. SIAM, Philadelphia (1982)

    Book  MATH  Google Scholar 

  40. Pirozzoli, S.: Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229, 7180–7190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kennedy, C., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227, 1676–1700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Verzicco, R., Orlandi, P.: A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123(2), 402–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Bernardini, M., Pirozzoli, S., Orlandi, P.: Velocity statistics in turbulent channel flow up to Re\(_{\tau } = 4000\). J. Fluid Mech. 742, 171–191 (2014)

    Article  Google Scholar 

  46. Moin, P., Verzicco, R.: On the suitability of second-order accurate discretizations for turbulent flow simulations. Eur. J. Mech. B/Fluids 55, 242–245 (2016)

    Article  MathSciNet  Google Scholar 

  47. Shoeybi, M., Svärd, M., Ham, F., Moin, P.: An adaptive implicit–explicit scheme for the DNS and LES of compressible flows on unstructured grids. J. Comput. Phys. 229(17), 5944–5965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Blaisdell, G., Mansour, N., Reynolds, W.: Numerical simulation of compressible homogeneous turbulence. Report TF-50, Thermosciences Division, Department of Mechanical Engineering, Stanford University (1991)

  49. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  50. Coleman, G., Kim, J., Moser, R.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159–183 (1995)

    Article  MATH  Google Scholar 

  51. Lechner, R., Sesterhenn, J., Friedrich, R.: Turbulent supersonic channel flow. J. Turbul. 2, 1–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Gavrilakis, S.: Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech. 244, 101–129 (1992)

    Article  Google Scholar 

  53. Huser, A., Biringen, S.: Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech. 257, 65–95 (1993)

    Article  MATH  Google Scholar 

  54. Pinelli, A., Uhlmann, M., Sekimoto, A., Kawahara, G.: Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107–122 (2010)

    Article  MATH  Google Scholar 

  55. Spalart, P.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge that most of the results reported in this paper have been achieved using the PRACE Research Infrastructure resource FERMI based at CINECA, Casalecchio di Reno, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Modesti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modesti, D., Pirozzoli, S. An Efficient Semi-implicit Solver for Direct Numerical Simulation of Compressible Flows at All Speeds. J Sci Comput 75, 308–331 (2018). https://doi.org/10.1007/s10915-017-0534-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0534-4

Keywords

Navigation