Skip to main content
Log in

Shock-Capturing Exponential Multigrid Methods for Steady Compressible Flows

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, a robust and efficient exponential multigrid framework is proposed for computing steady compressible flows. The algorithm based on a global coupling, exponential time integration scheme can provide strong damping effects to accelerate the convergence towards the steady state, while high-frequency, high-order spatial error modes are smoothed out with a \(s\)-stage preconditioned Runge–Kutta method. The resultant exponential multigrid framework is shown to be effective for smooth flows and can stabilize shock-capturing computations without limiting or adding artificial dissipation for medium-strength shock waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. B. Helenbrook, D. Mavriplis, and H. Atkins, “Analysis of p-multigrid for continuous and discontinuous finite element discretizations,” 16th AIAA Computational Fluid Dynamics Conference, AIAA-2003-3989 (2003).

  2. B. T. Helenbrook and H. L. Atkins, “Application of p-multigrid to discontinuous Galerkin formulations of the Poisson equation,” AIAA J. 44 (3), 566–575 (2006).

    Article  Google Scholar 

  3. K. J. Fidkowski, T. A. Oliver, J. Lu, et al., “p-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations,” J. Comput. Phys. 207 (1), 92–113 (2005).

    Article  Google Scholar 

  4. H. Atkins and B. Helenbrook, “Numerical evaluation of p-multigrid method for the solution of discontinuous Galerkin discretizations of diffusive equations,” 17th AIAA Computational Fluid Dynamics Conference (2005), p. 5110.

  5. F. Bassi, N. Franchina, A. Ghidoni, et al., “Spectral p-multigrid discontinuous Galerkin solution of the Navier–Stokes equations,” Int. J. Numer. Methods Fluids 67 (11), 1540–1558 (2011).

    Article  MathSciNet  Google Scholar 

  6. S.-J. Li, Z. J. Wang, L. Ju, and L.-S. Luo, “Explicit large time stepping with a second-order exponential time integrator scheme for unsteady and steady flows,” 55th AIAA Aerospace Sciences Meeting, AIAA-2017-0753 (2017).

  7. S.-J. Li, Z. J. Wang, L. Ju, and L.-S. Luo, “Fast time integration of Navier–Stokes equations with an exponential-integrator scheme,” 2018 AIAA Aerospace Sciences Meeting, AIAA-2018-0369 (2018).

  8. S.-J. Li, L.-S. Luo, Z. J. Wang, and L. Ju, “An exponential time-integrator scheme for steady and unsteady inviscid flows,” J. Comput. Phys. 365, 206–225 (2018).

    Article  MathSciNet  Google Scholar 

  9. S.-J. Li, “Mesh curving and refinement based on cubic Bézier surface for high-order discontinuous Galerkin methods,” Comput. Math. Math. Phys. 59 (12), 2080–2092 (2019).

    Article  MathSciNet  Google Scholar 

  10. S.-J. Li, L. Ju, and S. Hang, “Adaptive exponential time integration of the Navier–Stokes equations,” AIAA-2020-2033 (2020).

  11. M. Caliari and A. Ostermann, “Implementation of exponential Rosenbrock-type integrators,” Appl. Numer. Math. 59 (3), 568–582 (2009).

    Article  MathSciNet  Google Scholar 

  12. M. Tokman and J. Loffeld, “Efficient design of exponential-Krylov integrators for large scale computing,” Procedia Comput. Sci. 1 (1), 229–237 (2010).

    Article  Google Scholar 

  13. Y. Saad, “Analysis of some Krylov subspace approximations to the matrix exponential operator,” SIAM J. Numer. Anal. 29 (1), 209–228 (1992).

    Article  MathSciNet  Google Scholar 

  14. C. Moler, “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later,” SIAM J. Numer. Anal. 45 (1), 3–49 (2003).

    MathSciNet  MATH  Google Scholar 

  15. P. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 43 (2), 357–372 (1981).

    Article  MathSciNet  Google Scholar 

  16. K. Kitamura and E. Shima, “Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes,” J. Comput. Phys. 245, 62–83 (2013).

    Article  MathSciNet  Google Scholar 

  17. N. Pierce and M. Giles, “Preconditioning compressible flow calculations on stretched meshes,” 34th Aerospace Sciences Meeting and Exhibit, AIAA-1996-889 (1996).

  18. E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 1999).

    Book  Google Scholar 

  19. Y. Saad, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7 (3), 856–869 (1986).

    Article  MathSciNet  Google Scholar 

  20. P.-O. Persson and J. Peraire, “Sub-cell shock capturing for discontinuous Galerkin methods,” in The 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-112 (2006).

  21. V. Schmitt and F. Charpin, “Pressure distributions on the ONERA-M6-wing at transonic Mach numbers, experimental data base for computer program assessment,” Report of the Fluid Dynamics Panel Working Group 04, AGARD-AR 138, May (1979).

Download references

ACKNOWLEDGMENTS

This work is funded by the National Natural Science Foundation of China (NSFC) under the Grant U1930402. Beijing Computational Science Research Center provides computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Jie Li.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SJ. Shock-Capturing Exponential Multigrid Methods for Steady Compressible Flows. Comput. Math. and Math. Phys. 62, 1397–1412 (2022). https://doi.org/10.1134/S0965542522080085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522080085

Keywords:

Navigation