Skip to main content
Log in

A Fourth-Order Symmetric WENO Scheme with Improved Performance by New Linear and Nonlinear Optimizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A fourth-order, symmetric, weighted essentially non-oscillatory scheme is proposed with improved linear and nonlinear properties. In order to improve its linear property as the dispersion and dissipation relations, an optimization method is developed by solving a set of equations proposed in the paper. Using this approach, optimization objectives carefully chosen are realized, through which improved linear performance is attained while maintaining stability in the shock-reflection problem. Implementation of a nonlinear scheme is another important issue which usually affects its practical performance in applications. Optimization in this regard is thought to make the scheme work in its linear form effectively and problem-independently when the flow varies relatively smoothly. To fulfill the objectives, four topics were investigated. The first is a new hybrid indicator of smoothness which is based on the concept of total variation, through which good resolution is obtained for resolving structures with short wavelength. The second is a modification specially designed for the most downwind indicator to avoid numerical oscillations. The third is a new transition algorithm to make the scheme work between its linear and nonlinear states by a variable \(p_{wr}\). The new algorithm is so designed as to avoid misjudgment of smooth and oscillatory flow field. The fourth one regards case generality or problem-independence. To address four issues, the so-called rescale functions are presented separately. They are then integrated as one function for easy implementation. Using this integrated function, a fourth-order scheme for solving the Euler/Navier-Stokes equations can work in its optimized linear form in the smooth region and behave nonlinearly at discontinuities to ensure essentially oscillation-free solutions. Numerical examples manifest its capabilities to resolve waves from acoustics to shocks, flows from subsonic to hypersonic speed, and flow patterns from laminar to turbulent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Martín, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO scheme for the direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006)

    Article  MATH  Google Scholar 

  3. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weigted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  4. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lockard, D.P., Brentner, K.S., Atkins, H.L.: High-accuracy algorithms for computational aeroacoutics. AIAA J. 33, 246–251 (1995)

    Article  MATH  Google Scholar 

  6. Weirs, V.G., Candler, G.V.: Optimization of Weighted ENO Schemes for DNS of Compressible Turbulence, AIAA paper pp. 1997–1940 (1997)

  7. Sun, Z.-S., Ren, Y.-X., Larricq, C., Zhang, S.-Y., Yang, Y.-C.: A class of finite schemes with low dispersion and controllable dissipation for DNS of compressible turbulence. J. Comput. Phys. 230, 4616–4635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, Q., Zhang, H.-X., Gao, S.-C.: Numerical Simulations on Supersonic Shear Layer Flow. In: Proceedings of the ninth International Symposium on Computational Fluid Dynamics (CD-ROM), Bremen, Germany (1999)

  10. Li, Q., Zhang, H.-X., Gao, S.-C.: Numerical simulations on supersonic shear layer flow. Acta. Aerodynamica. Sinca. 18, 67–77 (2000)

    Google Scholar 

  11. Wang, Z.J., Chen, R.F.: Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity. J. Comput. Phys. 174, 381–404 (2001)

    Article  MATH  Google Scholar 

  12. Zhang, S.-H., Shu, C.-W.: A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 31, 273–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borges, R., Carmona, M., Costa, B., Don, W.-S.: An improved weighted essentially non-oscillatory scheme for hyperbolilc conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, X.-Y., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 8952–8965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ha, Y., Kim, C.-H., Lee, Y.-J., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232, 68–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ren, Y.-X., Liu, M., Zhang, H.: A characteristic-wise compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Taylor, E.M., Wu, M., Martín, M.P.: Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys. 223, 384–397 (2006)

    Article  MATH  Google Scholar 

  19. Wu, M., Martín, M.P.: Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45, 879–889 (2007)

    Article  Google Scholar 

  20. Cai, X., Ladeinde, F.: Performance of WENO scheme in generalized curvilinear coordinate systems, AIAA paper, 36 (2008)

  21. Li, Q., Guo, Q.-L., Zhang, H.-X.: Analyses on the dispersion overshoot and inverse dissipation of high order schemes. Adv. Appl. Math. Mech. 5, 809–824 (2013)

    Article  MathSciNet  Google Scholar 

  22. Gnoffo, P.: CFD validation studies for hypersonic flow prediction, AIAA paper pp. 2001–1025, (2001)

  23. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Q., Zhang, H.-X. et al: The Numerical Research on the Transition of the Three-Dimensional Supersonic Spatial Developing Mixing Layer when Mc = 0.5, New Trends in Fluid Mechanics Research, Springer Press, pp. 198–201 (2007). WOS:000254042000059

  25. Jiang, Y., Shu, C.W., Zhang, M.-P.: An alternative formulation of finite difference weighted ENO schemes with lax-wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), 1137–1160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bailly, C., Juve, D.: Numerical solution of acoustic propagation problems using linearized Euler. AIAA J. 38(1), 22–29 (2000)

    Article  Google Scholar 

  27. Bogey, C., Bailly, C., Juve, D.: Numerical simulation of sound generated by vortex pairing in a mixing layer. AIAA J. 38, 2210–2218 (2000)

    Article  Google Scholar 

  28. Bodony, D.J.: Analysis of sponge zones for computational fluid mechanics. J. Comput. Phys. 212, 681–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, Q.-L., Li, Q., Zhang, H.-X.: Investigations on the boundary condition of the acoustic computation. Trans. Nanjing Univ. Aeronaut. Astronaut. 30, 127–131 (2013)

    Google Scholar 

  30. Mickalke, A.: On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521–544 (1965)

    Article  MathSciNet  Google Scholar 

  31. Mickalke, A.: On the inviscid instability of the hypersonic-tangent velocity profile. J. Fluid Mech. 19, 543–556 (1964)

    Article  MathSciNet  Google Scholar 

  32. Samtaney, R., Pullin, D.I., Kosovic, B.: Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13(5), 1415–1430 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Science Foundation of China under the Grant Number 10972023 and 11272037, and also partially supported by National Key Basic Research and Development 973 Program of China under Grant Number 2014CB744100. The first author is grateful to Prof. Frank Lu for help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li.

Appendices

Appendix 1

Following the analysis of Ref. [3], the necessary and sufficient condition for nonlinear weighted scheme to achieve fourth-order convergence at smooth region are first derived. Considering Eq. (3) and \(r=r^{\prime }=3\), the following can be obtained for a fourth-order nonlinear scheme

$$\begin{aligned} \hat{f}_{j\pm 1/2}= & {} \sum _{k=0}^3 {C_k q_{k,j\pm 1/2}^3 } +\sum _{k=0}^3 {\left( {\omega _{k,j\pm 1/2} -C_k } \right) q_{k,j\pm 1/2}^3 } \\= & {} \left[ {H\left( {x_{j\pm 1/2} } \right) +B_{j\pm 1/2} \Delta x^{4}+O\left( {\Delta x^{5}} \right) } \right] +\sum _{k=0}^3 {\left( {\omega _{k,j\pm 1/2} -C_k } \right) q_{k,j\pm 1/2}^3 }, \end{aligned}$$

where h(x) satisfies \(f(x)=\frac{1}{\Delta x}\int _{x-{\Lambda x}/2}^{x+{\Lambda x}/2} {h\left( {{x}^{\prime }} \right) } d{x}^{\prime }\) and \(B_{ j\pm 1/2}\) is the combination of derivatives of f at \(x_{j\pm 1/2}\) by Taylor expansion. The second term in the previous formula can be further written as

$$\begin{aligned}&\sum _{k=0}^3 {\left( {\omega _{k,j\pm 1/2} -C_k } \right) q_{k,j\pm 1/2}^3} \\&\quad =\sum _{k=0}^3 {\left( {\omega _{k,j\pm 1/2} -C_k } \right) \left[ {H(x_{j\pm 1/2} )+A_k \Delta x^{3}+O\left( {\Delta x^{4}} \right) } \right] } \\&\quad =H(x_{j\pm 1/2} )\sum _{k=0}^3 {\left( {\omega _{k,j\pm 1/2} -C_k } \right) } +\Delta x^{3}\sum _{k=0}^3 {A_k \left( {\omega _{k,j\pm 1/2} -C_k } \right) } \\&\qquad +\sum _{k=0}^3 {\left( {\omega _{k,j\pm 1/2} -C_k } \right) O\left( {\Delta x^{4}} \right) }, \end{aligned}$$

where \(A_{k}\) is the similar combination of derivatives of f at \(x_{j\pm 1/2}\) by Taylor expansion for \(q^{3}_{k}\). Thus,

$$\begin{aligned}&\frac{\hat{f}_{j+1/2} -\hat{f}_{j-1/2} }{\Delta x} \\&\quad =\frac{h(x_{j+1/2} )-h(x_{j-1/2} )}{\Delta x}+\left( {B_{j+1/2} -B_{j-1/2} } \right) O(\Delta x^{3}) \\&\qquad +\sum _{k=0}^3 {\frac{(\omega _{k,j+1/2} -C_k )q_{k,j+1/2} }{\Delta x}} -\sum _{k=0}^3 {\frac{(\omega _{k,j-1/2} -C_k )q_{k,j-1/2} }{\Delta x}} +O(\Delta x^{4}) \\&\quad =f_j^{\prime }+{\left( {H(x_{j+1/2} )\sum _{k=0}^3 {(\omega _{k,j+1/2} -C_k )} -H(x_{j-1/2} )\sum _{k=0}^3 {(\omega _{k,j-1/2} -C_k )} } \right) }/{\Delta x} \\&\qquad +\Delta x^{2}\sum _{k=0}^3 {A_k (\omega _{k,j+1/2} -\omega _{k,j-1/2} )} \\&\qquad +\left[ {\sum _{k=0}^3 {(\omega _{k,j+1/2} -C_k )} -\sum _{k=0}^3 {(\omega _{k,j-1/2} -C_k )} } \right] O(\Delta x^{3})+O(\Delta x^{4}) \end{aligned}$$

Hence the necessary and sufficient condition (NSC) for the fourth-order convergence is

$$\begin{aligned} \sum _{k=0}^3 {(\omega _{k,j\pm 1/2} -C_k )}= & {} O(\Delta x^{5}) \\ \sum _{k=0}^3 {A_k (\omega _{k,j+1/2} -\omega _{k,j-1/2} )}= & {} O(\Delta x^{2}) \\ \omega _{k,j\pm 1/2} -C_k= & {} O(\Delta x), \end{aligned}$$

which is similar to the fifth-order counterpart in Ref. [3].

Next we will show if the last one of NSC is satisfied, its second one will stand. Considering that \(\omega _{k}\) is generally derived from \({ IS}_{k}\), which is comprised of f at dependent grid points {\(x_{j-2}\), ..., \(x_{j+3}\)}, it is reasonable to assume,

$$\begin{aligned} \omega _{k,j+1/2} =C_k +g\left( {f_{j-2}, f_{j-1}, f_j, f_{j+1}, f_{j+2}, f_{j+3} } \right) \Delta x+O(\Delta x^{2}) \end{aligned}$$

where g stands for certain differentiable function with six independent variables as \(g(y_{1}\), ...\(y_{6})\). Then,

$$\begin{aligned} \omega _{k,j+1/2} -\omega _{k,j-1/2}= & {} \left[ {\sum _{i=1}^6 {\left( {\frac{\partial g}{\partial y_i }} \right) \Delta f_{j-4+i} } } \right] \Delta x+O(\Delta x^{2})\\= & {} \left[ {\sum _{i=1}^6 {\left( {\frac{\partial g}{\partial y_i }} \right) } } \right] \left( {\frac{\partial f}{\partial x}} \right) _j \Delta x^{2}+O(\Delta x^{2}), \end{aligned}$$

where \(\Delta f_j =f_{j+1} -f_j \). So the second one of NSC is satisfied. Considering Eqs. (11) and (12), the last one of NSC is satisfied when \({ IS}_{k}\) is given by Eq. (22). Therefore the proposed indicator can make the nonlinear scheme achieve the fourth-order when critical points are not of concern.

Appendix 2

Here we will show that if a varying \(p_{wr}\) is used as the exponent in Eq. (10), the accuracy relation will be preserved. First we notice

$$\begin{aligned} \left( {1+x} \right) ^{p_{wr} }=1+p_{wr} \cdot x+\cdots +\frac{p_{wr} \left( {p_{wr} -1} \right) \cdot \cdot \cdot (p_{wr} -n+1)}{n!}x^{n}+\cdots ,\hbox { for }\left| x \right| \le 1. \end{aligned}$$

Then from Eqs. (10) and (11), the following relation still stands as

$$\begin{aligned} \alpha _k =\frac{C_k^r }{D^{p_{wr} }}\left( {1+O\left( {\Delta x} \right) ^{R-r_{cs} }} \right) , \end{aligned}$$

where the meaning of symbols can be found in Sect. 3.1. Then,

$$\begin{aligned} \sum _l {\alpha _l } =\sum _l {\frac{C_l }{D^{p_{wr} }}\left( {1-O(\Delta x^{R-r_{cs} })} \right) } =\frac{1}{D^{p_{wr} }}-O(\Delta x^{R-r_{cs} }), \end{aligned}$$

and therefore

$$\begin{aligned} \omega _k= & {} \frac{\alpha _k }{\sum _l {\alpha _l } }=\frac{C_k^r \left( {1-O(\Delta x^{R-r_{cs} })} \right) }{1-O(\Delta x^{R-r_{cs} })}=C_k^r \left( {1-O(\Delta x^{R-r_{cs1}})} \right) \left( {1+O(\Delta x^{R-r_{cs} })+\cdots } \right) \\= & {} C_k^r +O(\Delta x^{R-r_{cs} }). \end{aligned}$$

Hence the accuracy requirement by Ref. [1] is satisfied, and \(p_{wr}\) can be integrated into the weighted scheme used as the exponent in Eq. (10).

Appendix 3

When characteristic variables are used in the scheme, a diagonal matrix may need to be used for rescaling. This is because the threshold values of the algorithm in Sect. 3.4 are obtained when the following \(L_{ref}\) is used to derive characteristic variables, so the thresholds might not work when other forms of characteristic variables are used. And this happens when different left eigenvector matrix is used like L below. In order to make the thresholds work for different characteristic variables, an operation is proposed by multiplying a diagonal matrix \(\Lambda _{cv}\). The derivation of the matrix (Eq. 34) is explained as follows.

(1) First consider the following left eigenvector matrix \(L_{ref}\) to compute characteristic variables, by using of which aforementioned threshold values work in computations.

$$\begin{aligned} L_{ref} =\left[ \begin{array}{ccccc} {\frac{1}{2a^{2}}\left( {\phi ^{2}+a\bar{\theta }} \right) } &{} {-\frac{1}{2a^{2}}\left[ {\left( {\gamma -1} \right) u+\bar{k}_x a} \right] } &{} {-\frac{1}{2a^{2}}\left[ {\left( {\gamma -1} \right) v+\bar{k}_y a} \right] } &{} {-\frac{1}{2a^{2}}\left[ {\left( {\gamma -1} \right) w+\bar{k}_z a} \right] } &{} {\frac{1}{2a^{2}}\left( {\gamma -1} \right) } \\ {\bar{k}_x \left( {1-\frac{\phi ^{2}}{a^{2}}} \right) +\bar{k}_z \frac{v}{a}-\bar{k}_y \frac{w}{a}} &{} {\frac{\bar{k}_x }{a^{2}}\left( {\gamma -1} \right) u} &{} {\frac{\bar{k}_x }{a^{2}}\left( {\gamma -1} \right) v-\frac{\bar{k}_z }{a}} &{} {\frac{\bar{k}_x }{a^{2}}\left( {\gamma -1} \right) w+\frac{\bar{k}_y }{a}} &{} {-\frac{\bar{k}_x }{a^{2}}\left( {\gamma -1} \right) } \\ {\bar{k}_y \left( {1-\frac{\phi ^{2}}{a^{2}}} \right) +\bar{k}_x \frac{w}{a}-\bar{k}_z \frac{u}{a}} &{} {\frac{\bar{k}_y }{a^{2}}\left( {\gamma -1} \right) u+\frac{\bar{k}_z }{a}} &{} {\frac{\bar{k}_y }{a^{2}}\left( {\gamma -1} \right) v} &{} {\frac{\bar{k}_y }{a^{2}}\left( {\gamma -1} \right) w-\frac{\bar{k}_x }{a}} &{} {-\frac{\bar{k}_y }{a^{2}}\left( {\gamma -1} \right) } \\ {\bar{k}_z \left( {1-\frac{\phi ^{2}}{a^{2}}} \right) +\bar{k}_y \frac{u}{a}-\bar{k}_x \frac{v}{a}} &{} {\frac{\bar{k}_z }{a^{2}}\left( {\gamma -1} \right) u-\frac{\bar{k}_y }{a}} &{} {\frac{\bar{k}_z }{a^{2}}\left( {\gamma -1} \right) v+\frac{\bar{k}_x }{a}} &{} {\frac{\bar{k}_z }{a^{2}}\left( {\gamma -1} \right) w} &{} {-\frac{\bar{k}_z }{a^{2}}\left( {\gamma -1} \right) } \\ {\frac{1}{2a^{2}}\left( {\phi ^{2}-a\bar{\theta }} \right) } &{} {-\frac{1}{2a^{2}}\left[ {\left( {\gamma -1} \right) u-\bar{k}_x a} \right] } &{} {-\frac{1}{2a^{2}}\left[ {\left( {\gamma -1} \right) v-\bar{k}_y a} \right] } &{} {-\frac{1}{2a^{2}}\left[ {\left( {\gamma -1} \right) w-\bar{k}_z a} \right] } &{} {\frac{1}{2a^{2}}\left( {\gamma -1} \right) } \\ \end{array} \right] \end{aligned}$$

where k represents \(\xi \), \(\eta \), or \(\zeta \), a is the sound speed, \(\varphi ^{2}=\frac{1}{2}\left( {\gamma -1} \right) \left( {u^{2}+v^{2}+w^{2}} \right) \), \(\bar{\theta }=\frac{k_x u+k_y v+k_z w}{\sqrt{k_x^{2}+k_y^{2}+k_z^{2}}}\), \(\bar{k}_x =\frac{k_x }{\sqrt{k_x^{2}+k_y^{2}+k_z^{2}}}\), and so it is with \(\bar{k}_y \) and \(\bar{k}_z \).

The inverse matrix of \(L_{ref}\) is also presented for completeness:

$$\begin{aligned} L_{ref}^{-1} =\left[ {{\begin{array}{ccccc} 1&{} {\bar{k}_x }&{} {\bar{k}_y }&{} {\bar{k}_z }&{} 1 \\ {u-\bar{k}_x a}&{} {\bar{k}_x u}&{} {\bar{k}_y u+\bar{k}_z a}&{} {\bar{k}_z u-\bar{k}_y a}&{} {u+\bar{k}_x a} \\ {v-\bar{k}_y a}&{} {\bar{k}_x v-\bar{k}_z a}&{} {\bar{k}_y v}&{} {\bar{k}_z v+\bar{k}_x a}&{} {v+\bar{k}_y a} \\ {w-\bar{k}_z a}&{} {\bar{k}_x w+\bar{k}_y a}&{} {\bar{k}_y w-\bar{k}_x a}&{} {\bar{k}_z w}&{} {w+\bar{k}_z a} \\ {\frac{\varphi ^{2}+a^{2}}{\gamma -1}-\bar{\theta }a}&{} {\frac{\bar{k}_x \varphi ^{2}a}{\gamma -1}+\bar{k}_y wa-\bar{k}_z va}&{} {\frac{\bar{k}_y \varphi ^{2}a}{\gamma -1}+\bar{k}_z ua-\bar{k}_x wa}&{} {\frac{\bar{k}_z \varphi ^{2}a}{\gamma -1}+\bar{k}_x va-\bar{k}_y ua}&{} {\frac{\varphi ^{2}+a^{2}}{\gamma -1}+\bar{\theta }a} \\ \end{array} }} \right] \end{aligned}$$

(2) Next consider another matrix L to derive characteristic variables. The following relation stands: \(L\left( \cdot \right) =LL_{ref}^{-1} L_{ref} \left( \cdot \right) \) or \(L_{ref} \left( \cdot \right) =\left( {L_{ref}^{-1} L} \right) L\left( \cdot \right) \). Then the difference between the two versions of variables will be \(LL_{ref}^{-1} \), i.e., \(\Lambda _{cv}\). Take L used in the paper as an example, which is of the form:

$$\begin{aligned} L=\left[ \begin{array}{ccccc} {\frac{1}{\sqrt{2}a}\left( {\varphi ^{2}+a\bar{\theta }} \right) } &{} {-\frac{1}{\sqrt{2}a}\left[ {\left( {\gamma -1} \right) u+\bar{k}_x a} \right] } &{} {-\frac{1}{\sqrt{2}a}\left[ {\left( {\gamma -1} \right) v+\bar{k}_y a} \right] } &{} {-\frac{1}{\sqrt{2}a}\left[ {\left( {\gamma -1} \right) w+\bar{k}_z a} \right] } &{} {\frac{1}{\sqrt{2}a}\left( {\gamma -1} \right) } \\ {\frac{\bar{k}_x }{a}\left( {a^{2}-\varphi ^{2}} \right) +\bar{k}_z v-\bar{k}_y w} &{} {\frac{\bar{k}_x }{a}\left( {\gamma -1} \right) u} &{} {\frac{\bar{k}_x }{a}\left( {\gamma -1} \right) v-\bar{k}_z } &{} {\frac{\bar{k}_x }{a}\left( {\gamma -1} \right) w+\bar{k}_y } &{} {-\frac{\bar{k}_x }{a}\left( {\gamma -1} \right) } \\ {\frac{\bar{k}_y }{a}\left( {a^{2}-\varphi ^{2}} \right) +\bar{k}_x w-\bar{k}_z u} &{} {\frac{\bar{k}_y }{a}\left( {\gamma -1} \right) u+\bar{k}_z } &{} {\frac{\bar{k}_y }{a}\left( {\gamma -1} \right) v} &{} {\frac{\bar{k}_y }{a}\left( {\gamma -1} \right) w-\bar{k}_x } &{} {-\frac{\bar{k}_y }{a}\left( {\gamma -1} \right) } \\ {\frac{\bar{k}_z }{a}\left( {a^{2}-\varphi ^{2}} \right) +\bar{k}_y u-\bar{k}_x v} &{} {\frac{\bar{k}_z }{a}\left( {\gamma -1} \right) u-\bar{k}_y } &{} {\frac{\bar{k}_z }{a}\left( {\gamma -1} \right) v+\bar{k}_x } &{} {\frac{\bar{k}_z }{a}\left( {\gamma -1} \right) w} &{} {-\frac{\bar{k}_z }{a}\left( {\gamma -1} \right) } \\ {\frac{1}{\sqrt{2}a}\left( {\varphi ^{2}-a\bar{\theta }} \right) } &{} {-\frac{1}{\sqrt{2}a}\left[ {\left( {\gamma -1} \right) u-\bar{k}_x a} \right] } &{} {-\frac{1}{\sqrt{2}a}\left[ {\left( {\gamma -1} \right) v-\bar{k}_y a} \right] } &{} {-\frac{1}{\sqrt{2}a}\left[ {\left( {\gamma -1} \right) w-\bar{k}_z a} \right] } &{} {\frac{1}{\sqrt{2}a}\left( {\gamma -1} \right) } \\ \end{array}\right] \end{aligned}$$

For completeness, the \(L^{-1}\) is presented also as:

$$\begin{aligned} L^{-1}=\left[ \begin{array}{ccccc} {\frac{1}{\sqrt{2}a}} &{} {\frac{\bar{k}_x }{a}} &{} {\frac{\bar{k}_y }{a}} &{} {\frac{\bar{k}_z }{a}} &{} {\frac{1}{\sqrt{2}a}} \\ {\frac{1}{\sqrt{2}a}\left( {u-\bar{k}_x a} \right) } &{} {\frac{\bar{k}_x }{a}u} &{} {\frac{\bar{k}_y }{a}u+\bar{k}_z } &{} {\frac{\bar{k}_z }{a}u-\bar{k}_y } &{} {\frac{1}{\sqrt{2}a}\left( {u+\bar{k}_x a} \right) } \\ {\frac{1}{\sqrt{2}a}\left( {v-\bar{k}_y a} \right) } &{} {\frac{\bar{k}_x }{a}v-\bar{k}_z } &{} {\frac{\bar{k}_y }{a}v} &{} {\frac{\bar{k}_z }{a}v+\bar{k}_x } &{} {\frac{1}{\sqrt{2}a}\left( {v+\bar{k}_y a} \right) } \\ {\frac{1}{\sqrt{2}a}\left( {w-\bar{k}_z a} \right) } &{} {\frac{\bar{k}_x }{a}w+\bar{k}_y } &{} {\frac{\bar{k}_y }{a}w-\bar{k}_x } &{} {\frac{\bar{k}_z }{a}w} &{} {\frac{1}{\sqrt{2}a}\left( {w+\bar{k}_z a} \right) } \\ {\frac{1}{\sqrt{2}a}\left( {\frac{\varphi ^{2}+a^{2}}{\gamma -1}-\bar{\theta }a} \right) } &{} {\bar{k}_x \chi +\bar{k}_y w-\bar{k}_z v} &{} {\bar{k}_y \chi +\bar{k}_z u-\bar{k}_x w} &{} {\bar{k}_z \chi +\bar{k}_x v-\bar{k}_y u} &{} {\frac{1}{\sqrt{2}a}\left( {\frac{\varphi ^{2}+a^{2}}{\gamma -1}+\bar{\theta }a} \right) } \\ \end{array} \right] \end{aligned}$$

It can be found that: \(L_{ref}^{-1} L={ diag}\left( {1\big /{\left( {\sqrt{2}a} \right) },1/a,\ldots ,1/a,1\big /{\left( {\sqrt{2}a} \right) }} \right) \), which turns to be \(\Lambda _{cv}\) in Eq. (34).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Guo, Q., Sun, D. et al. A Fourth-Order Symmetric WENO Scheme with Improved Performance by New Linear and Nonlinear Optimizations. J Sci Comput 71, 109–143 (2017). https://doi.org/10.1007/s10915-016-0293-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0293-7

Keywords

Navigation