Skip to main content
Log in

An Adaptive SDG Method for the Stokes System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Staggered grid techniques are attractive ideas for flow problems due to their more enhanced conservation properties. Recently, a staggered discontinuous Galerkin method is developed for the Stokes system. This method has several distinctive advantages, namely high order optimal convergence as well as local and global conservation properties. In addition, a local postprocessing technique is developed, and the postprocessed velocity is superconvergent and pointwisely divergence-free. Thus, the staggered discontinuous Galerkin method provides a convincing alternative to existing schemes. For problems with corner singularities and flows in porous media, adaptive mesh refinement is crucial in order to reduce the computational cost. In this paper, we will derive a computable error indicator for the staggered discontinuous Galerkin method and prove that this indicator is both efficient and reliable. Moreover, we will present some numerical results with corner singularities and flows in porous media to show that the proposed error indicator gives a good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Blanc, P., Eymard, R., Herbin, R.: A staggered finite volume scheme on general meshes for the generalized Stokes problem in two space dimensions. Int. J. Finite Vol. 2, 1–31 (2005)

    MathSciNet  Google Scholar 

  2. Boersma, B.J.: A staggered compact finite difference formulation for the compressible Navier-Stokes equations. J. Comput. Phys. 208, 675–690 (2005)

    Article  MATH  Google Scholar 

  3. Carstensen, C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheung, S.W., Chung, E., Kim, H.H., Qian, Y.: Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 302, 251–266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carrero, J., Cockburn, B., Schötzau, D.: Hybridized globally divergence-free LDG methods Part I: the stokes problem. Math. Comput. 75, 533–563 (2006)

    Article  MATH  Google Scholar 

  6. Chan, H.N., Chung, E.T.: A staggered discontinuous Galerkin method with local TV regularization for the Burgers equation. Nume. Math.: Theory, Methods Appl. 8, 451–474 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Chung, E.T., Ciarlet Jr., P.: A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials. J. Comput. Appl. Math. 239, 189–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. Part II: The Stokes flow. J. Sci. Comput. 66, 870–887 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carstensen, C., Gudi, T., Jensen, M.: A unifying theory of a posteriori error control for discontinuous Galerkin FEM. Numer. Math. 112, 363–379 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen, C., Hu, J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chung, E.T., Lam, C.Y., Qian, J.: A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography. Geophysics 80, T119–T135 (2015)

    Article  Google Scholar 

  13. Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the convection-diffusion equation. J. Numer. Math. 20, 1–31 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the curl-curl operator. IMA J. Numer. Anal. 32, 1241–1265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, E.T., Yu, T.F.: Staggered-grid spectral element methods for elastic wave simulations. J. Comput. Appl. Math. 285, 132–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung, E., Yuen, M.C., Zhong, L.: A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell’s equations. Appl. Math. Comput. 237, 613–631 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Gopalakrishnan, J., Nguyen, N., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80, 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Sayas, F.J.: Divergence-conforming HDG methods for Stokes flows. Math. Comput. 83, 1571–1598 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Shi, K.: Conditions for superconvergence of HDG methods for Stokes flow. Math. Comput. 82, 651–671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dörfler, W., Ainsworth, M.: Reliable a posteriori error control for nonconformal finite element approximation of Stokes flow. Math. Comput. 74, 1599–1619 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dari, E., Durán, R.G., Padra, C.: Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comput. 64, 1017–1033 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Egger, H., Waluga, C.: hp analysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 22, 687–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Houston, P., Perugia, I., Schotzau, D.: An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations. IMA J. Numer. Anal. 27, 122–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hannukainen, A., Stenberg, R., Vohralík, M.: A unified framework for a posteriori error estimation for the Stokes problem. Numer. Math. 122, 725–769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Houston, P., Schötzau, D., Wei, X.: A mixed DG method for linearized incompressible magnetohydrodynamics. J. Sci. Comput. 40, 281–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Houston, P., Schotzau, D., Wihler, T.: hp-Adaptive discontinuous Galerkin finite element methods for the Stokes problem. In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, vol. II, (2004)

  28. Houston, P., Schotzau, D., Wihler, Th: Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem. J. Sci. Comput. 22, 347–370 (2005). (Special Issue: Discontinuous Galerkin Methods)

    MathSciNet  MATH  Google Scholar 

  29. Karakashian, O.A., Pascal, F.: A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  MATH  Google Scholar 

  30. Kim, H.H., Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327–3350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Larson, M.G., Målqvist, A.: A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108, 487–500 (2008)

    Article  MathSciNet  Google Scholar 

  32. Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schötzau, D., Wihler, T.P.: Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons. Numer. Math. 96, 339–361 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shankar, P.N., Deshpande, M.D.: Fluid Mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tavelli, M., Dumbser, M.: A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations. Appl. Math. Comput. 248, 70–92 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Toselli, A.: hp discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12, 1565–1597 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, E.T., Du, J. & Yuen, M.C. An Adaptive SDG Method for the Stokes System. J Sci Comput 70, 766–792 (2017). https://doi.org/10.1007/s10915-016-0265-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0265-y

Keywords

Navigation