Skip to main content
Log in

Optimal Spectral Schemes Based on Generalized Prolate Spheroidal Wave Functions of Order \(-1\)

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce a family of generalized prolate spheroidal wave functions (PSWFs) of order \(-1,\) and develop new spectral schemes for second-order boundary value problems. Our technique differs from the differentiation approach based on PSWFs of order zero in Kong and Rokhlin (Appl Comput Harmon Anal 33(2):226–260, 2012); in particular, our orthogonal basis can naturally include homogeneous boundary conditions without the re-orthogonalization of Kong and Rokhlin (2012). More notably, it leads to diagonal systems or direct “explicit” solutions to 1D Helmholtz problems in various situations. Using a rule optimally pairing the bandwidth parameter and the number of basis functions as in Kong and Rokhlin (2012), we demonstrate that the new method significantly outperforms the Legendre spectral method in approximating highly oscillatory solutions. We also conduct a rigorous error analysis of this new scheme. The idea and analysis can be extended to generalized PSWFs of negative integer order for higher-order boundary value and eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Al-Gwaiz, M.A.: Sturm–Liouville Theory and Its Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Harcourt/Academic Press, San Diego (2001)

    MATH  Google Scholar 

  4. Babuška, I., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtze equation considering high wave number? SIAM Rev. 34(6), 2392–2423 (1997)

    MATH  Google Scholar 

  5. Bouwkamp, C.J.: On the theory of spheroidal wave functions of order zero. Ned. Akad. Wetensch. Proc. 53, 931–944 (1950)

    MathSciNet  MATH  Google Scholar 

  6. Boyd, J.P.: Large mode number eigenvalues of the prolate spheroidal differential equation. Appl. Math. Comput. 145(2), 881–886 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Boyd, J.P., Gassner, G., Sadiq, B.A.: The nonconvergence of \(h\)-refinement in prolate elements. J. Sci. Comput. 57(2), 372–389 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  9. Guo, B.Y., Shen, J., Wang, L.L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27(1), 305–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications. Birkhäuser, New York (2012)

    Book  MATH  Google Scholar 

  11. Bonami, A., Karoui, A.: Spectral decay of time and frequency limiting operator. Appl. Comput. Harmon. Anal. (2015). doi:10.1016/j.acha.2015.05.003.2015

  12. Karoui, A., Souabni, A.: Generalized prolate spheroidal wave functions: spectral analysis and approximation of almost band-limited functions. J. Fourier Anal. Appl. 22(2), 383–412 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kong, W.Y., Rokhlin, V.: A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions. Appl. Comput. Harmon. Anal. 33(2), 226–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Osipov, A., Rokhlin, V., Xiao, H.: Prolate Spheroidal Wave Functions of Order Zero. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  15. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  16. Shen, J., Wang, L.L.: Spectral approximation of the Helmholtz equation with high wave numbers. SIAM J. Numer. Anal. 43(2), 623–644 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Bell Syst. Tech. J. 43(6), 3009–3057 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Szegö, G.: Orthogonal Polynomials, 4th edn. AMS Colloquium Publications, Providence (1975)

    MATH  Google Scholar 

  21. Wang, K., Wong, Y.S., Deng, J.: Efficient and accurate numerical solutions for Helmholtz equation in polar and spherical coordinates. Commun. Comput. Phys. 17(3), 779–807 (2015)

    Article  MathSciNet  Google Scholar 

  22. Wang, L.L., Samson, M.D., Zhao, X.D.: A well-conditioned collocation method using a pseudospectral integration matrix. SIAM J. Sci. Comput. 36(3), 907–929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, L.L., Zhang, J.: A new generalization of the PSWFs with applications to spectral approximations on quasi-uniform grids. Appl. Comput. Harmon. Anal. 29(3), 525–545 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, L.L., Zhang, J., Zhang, Z.: On hp-convergence of prolate spheroidal wave functions and a new well-conditioned prolate-collocation scheme. J. Comput. Phys. 268(2), 377–398 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weideman, J.A.C., Trefethen, L.N.: The eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal. 25(6), 1279–1298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. 17(4), 805–838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Z.: How many numerical eigenvalues can we trust? J. Sci. Comput. 65(2), 1–12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhao, X.D., Wang, L.L., Xie, Z.Q.: Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions. SIAM J. Numer. Anal. 51(3), 1443–1469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Wang.

Additional information

Jing Zhang: The work of this author is partially supported by the National Natural Science Foundation of China (11201166), and the Fundamental Research Funds for the Central Universities (CCNU15A02033).

Li-Lian Wang: The research of this author is partially supported by Singapore MOE AcRF Tier 1 Grants (RG 15/12 and 27/15), and Singapore MOE AcRF Tier 2 Grant (MOE 2013-T2-1-095, ARC 44/13).

Huiyuan Li: The research of this author is partially supported by the National Natural Science Foundation of China (91130014, 11471312 and 91430216).

Zhimin Zhang: The research of this author is supported in part by the National Natural Science Foundation of China (11471031 and 91430216), and the U.S. National Science Foundation (DMS-1419040). The first author would like to thank the supports from both Beijing Computational Sciences and Research Center, Beijing, China and Division of Mathematical Sciences of Nanyang Technological University, Singapore.

Appendix 1: Proof of Lemma 4.1

Appendix 1: Proof of Lemma 4.1

We first recall the following bound in [12, Appendix].

Proposition 4.1

Let \(q_n\) be defined as in (4.1). If \(q_n\le 1\), then for all positive integer k such that \(k(k+3)\le \chi _n^{(1)}(c)\) and \(n+k\) is even, we have

$$\begin{aligned} |\partial _x^k\psi _n^{(1)}(0)|\le \sqrt{2}\left( \chi _n^{(1)}(c)\right) ^{k/2}. \end{aligned}$$
(4.26)

Note that if \(n+k\) is odd, then \(\partial _x^k\psi _n^{(1)}(0)=0.\)

Proposition 4.2

Let \(\{\beta _k^n\}\) be defined in (2.16). For given \(c>0\) and \(n\in {\mathbb N},\) let

$$\begin{aligned} k(k+3)+c^2\le \chi _n^{(1)}(c). \end{aligned}$$
(4.27)

We have

  1. (i)

    If both n and k are even, then \(\beta _{0}^n, \beta _2^n, \beta _4^n,\ldots \) have the same sign, and \(|\beta _k^n|\le |\beta _{k+2}^n|\) for all \(k=0,2,4,\ldots ,\) satisfying (4.27);

  2. (ii)

    If both n and k are odd, then \(\beta _{1}^n, \beta _3^n, \beta _5^n,\ldots \) have the same sign, and \(|\beta _k^n|\le |\beta _{k+2}^n|\) for all \(k=1,3,5,\ldots ,\) satisfying (4.27).

Note that if \(n+k\) is odd, then \(\beta _{k}^n=0.\)

Proof

From (2.16) and the parity of \(\psi _n^{(1)}(x)\) and \(P_k^{(1)}(x),\) we have \(\beta _{k}^n=0,\) if \(n+k\) is odd.

We first justify the statement (i). By (2.18),

$$\begin{aligned} \beta _{k+2}^n=\frac{1}{F(k+2)c^2}\left\{ \left( \chi _n^{(1)}(c)-k(k+3)-G(k)c^2\right) \beta _{k}^n-{F({{k}}) c^2}\beta _{k-2}^n\right\} ,\;\;\; k\ge 0, \end{aligned}$$
(4.28)

with \(\beta _{-2}^n=\beta _{-1}^n=0\), where

$$\begin{aligned} F(k)=\sqrt{\frac{(k-1)k(k+1)(k+2)}{(2k-1)(2k+1)^2(2k+3)}},\quad G(k)=\frac{2k(k+3)+1}{(2k+1)(2k+5)}. \end{aligned}$$
(4.29)

One verifies that for \(k\ge 2\),

$$\begin{aligned} \frac{1}{5}<\frac{(k-1)(k+2)}{(2k+1)^2}<F(k)=\sqrt{\frac{k(k+1)}{(2k+1)^2}}\sqrt{\frac{(k-1)(k+2)}{(2k-1)(2k+3)}}<\sqrt{\frac{1}{4}}\sqrt{\frac{1}{4}}=\frac{1}{4}, \end{aligned}$$
(4.30)

and for \(k\ge 1,\)

$$\begin{aligned} \frac{2}{5}\le \frac{k}{2k+1}<\frac{2k(k+3)}{(2k+1)(2k+5)}<G(k)<\frac{(2k+1)(k+\frac{5}{2})}{(2k+1)(2k+5)}=\frac{1}{2}. \end{aligned}$$
(4.31)

We proceed with the proof by induction. For \(k=0\), we find from (4.28) that

$$\begin{aligned} \begin{aligned} \beta _{2}^n=\frac{5}{2c^2}\sqrt{\frac{7}{2}}\left( \chi _n^{(1)}-\frac{c^2}{5}\right) \beta _{0}^n. \end{aligned} \end{aligned}$$
(4.32)

It is evident that with a looser condition than (4.27), the factor in front of \(\beta _{0}^n\) is positive, so \(\beta _2^n\) has the same sign as \(\beta _0^n.\) Moreover, by (4.27) with \(k=0,\)

$$\begin{aligned} \begin{aligned}&|\beta _{2}^n|=\frac{5}{2c^2}\sqrt{\frac{7}{2}}\left( \chi _n^{(1)}-\frac{c^2}{5}\right) |\beta _{0}^n|\ge 2\sqrt{\frac{7}{2}}|\beta _{0}^n|\ge |\beta _{0}^n|, \end{aligned} \end{aligned}$$
(4.33)

We next assume that \(\beta _{k-2}^n\beta _k^n>0\) and \(|\beta _{k-2}^n|\le |\beta _k^n|\) for all \(k\ge 2.\) Then we derive from (4.28), (4.30)–(4.31) and (4.27) that

$$\begin{aligned} \begin{aligned} \beta _{k}^n\beta _{k+2}^n&=\frac{1}{F(k+2)c^2}\left\{ \left( \chi _n^{(1)}(c)-k(k+3)-G(k)c^2\right) (\beta _{k}^n)^2-{F({{k}}) c^2}\beta _{k-2}^n\beta _{k}^n\right\} \\&\ge \frac{1}{F(k+2)c^2}\left\{ \chi _n^{(1)}(c)-k(k+3)-G(k)c^2-F({{k}})c^2\right\} (\beta _{k}^n)^2\\> \frac{1}{F(k+2)c^2}\left\{ \chi _n^{(1)}(c)-k(k+3)-\frac{3}{4} c^2\right\} (\beta _{k}^n)^2>0, \end{aligned} \end{aligned}$$
(4.34)

which implies \(\beta _{k+2}^n\,\beta _k^n>0.\) Now, we show that \(|\beta _{k}^n|\le |\beta _{k+2}^n|\). We show this by contradiction. Assuming that \(|\beta _{k}^n|>|\beta _{k+2}^n|,\) we find from (4.34) and (4.30) that

$$\begin{aligned} \begin{aligned} 0> \frac{1}{F(k+2)c^2}\left\{ \chi _n^{(1)}(c)-k(k+3)-\frac{3}{4} c^2\right\} |\beta _{k}^n|-|\beta _{k+2}^n|\\>\frac{1}{F(k+2)c^2}\left\{ \chi _n^{(1)}-k(k+3)-\frac{3c^2}{4}-F(k+2)c^2\right\} |\beta _{k}^n|\\&>\frac{1}{F(k+2)c^2}\left\{ \chi _n^{(1)}-k(k+3)-c^2\right\} |\beta _{k}^n|, \end{aligned} \end{aligned}$$
(4.35)

which contradicts to (4.27). Thus, we have \(|\beta _{k}^n|\le |\beta _{k+2}^n|\) for even n and k.

The statement (ii) can be justified similarly. In fact, the derivations in (4.34)–(4.35) also hold for odd nk,  so it suffices to verify the initial of the induction. Like (4.32)–(4.33), we can show that

$$\begin{aligned} \beta _{3}^n=\frac{7}{2c^2}\sqrt{\frac{3}{2}}\left( \chi _n^{(1)}-4-\frac{3}{7}c^2\right) \beta _{1}^n, \end{aligned}$$

and

$$\begin{aligned} |\beta _{3}^n|=\frac{7}{2c^2}\sqrt{\frac{3}{2}} \left( \chi _n^{(1)}-4-\frac{3}{7}c^2\right) |\beta _{1}^n|\ge \sqrt{6}|\beta _{1}^n|\ge |\beta _{1}^n|, \end{aligned}$$

which implies \(\beta _3^n\) has the same sign as \(\beta _1^n\), and \(|\beta _1^n|\le |\beta _3^n|.\) Then, we use (4.34)–(4.35) to complete the proof of Proposition A.2.\(\square \)

Proof of Lemma 4.1

With the above propositions, we are now ready to prove Lemma 4.1. \(\square \)

The bound for \(\beta _0^n\) follows directly from (2.23) and (4.26) with \(k=0.\)

We carry out the proof by estimating the moment: \(\int _{-1}^1t^m\psi _n^{(1)}(t)\omega _1(t)dt.\) Note that

$$\begin{aligned} t^j=\sum _{k=0}^j\hat{p}_{jk}P_k^{(1)}(t),\;\;\; \mathrm{where}\;\;\; \hat{p}_{jk}=\int _{-1}^1 t^j P_k^{(1)}(t)(1-t^2)dt, \end{aligned}$$
(4.36)

where we can find the formula of \(\hat{p}_{jk}\) from [12, (16)-(17)], and have

$$\begin{aligned} \hat{p}_{jk}=0,\;\; \text {if } k+j\text { is odd};\;\;\; \hat{p}_{jk}>0,\;\; \text {if } k+j\text { is even};\;\;\; \hat{p}_{jj}=\frac{\sqrt{2\pi (2j+3)j!(j+2)!}}{2^{j+2}\Gamma (j+5/2)}. \end{aligned}$$
(4.37)

Thus, we obtain from (2.16) that

$$\begin{aligned} \int _{-1}^1t^j\psi _n^{(1)}(t)\omega _1(t)dt=\sum _{k=0}^j\hat{p}_{jk}\beta _k^n = {\left\{ \begin{array}{ll} 0,\quad &{}\text {if }n+j\text { is odd},\\ \displaystyle \sum _{k=0}^{j/2}\hat{p}_{j,2k}\,\beta _{2k}^n,\;\; &{} \text { if }n,j\text { are even},\\ {\displaystyle \sum _{k=0}^{{(j-1)}/2}} \hat{p}_{j, 2k+1}\beta _{2k+1}^n,\; &{} \text { if }n,j\text { are odd}, \end{array}\right. } \end{aligned}$$
(4.38)

where we used the property: \(\beta _k^n=0\), if \(k+n\) is odd.

On the other hand, taking the jth derivative at \(x=0\) on both sides of (2.8) with \(\alpha =1\), yields

$$\begin{aligned} \begin{aligned} \int _{-1}^1 t^j\,\psi _n^{(1)}(t)(1-t^2)\,dt&=(-1)^j\, \mathrm{i}^{n+j} c^{-j}\,\lambda _n^{(1)}(c)\,\partial _x^j\psi _n^{(1)}(0), \end{aligned} \end{aligned}$$
(4.39)

which vanishes, if \(j+n\) is odd.

Thus, we have from Lemma A.2 (i), and (4.37)–(4.39) that for even nj

$$\begin{aligned} \left| \displaystyle \sum _{k=0}^{j/2}\hat{p}_{j,2k}\,\beta _{2k}^n\right| =\displaystyle \sum _{k=0}^{j/2}\hat{p}_{j,2k}\,\left| \beta _{2k}^n\right| = c^{-j}\lambda _n^{(1)}(c)\,\left| \partial _x^j\psi _n^{(1)}(0)\right| , \end{aligned}$$
(4.40)

and further by (4.26),

$$\begin{aligned} \hat{p}_{jj} |\beta _j^n|\le \sum _{k=0}^{j/2}\hat{p}_{j,2k}\,\left| \beta _{2k}^n\right| =c^{-j}\lambda _n^{(1)}(c)|\partial _x^j\psi _n^{(1)}(0)|\le \sqrt{2}\left( \frac{1}{ \sqrt{q_n}}\right) ^{j}\lambda _n^{(1)}(c). \end{aligned}$$
(4.41)

Similarly, for odd nj

$$\begin{aligned} \hat{p}_{jj} |\beta _j^n|\le \sum _{k=0}^{(j-1)/2}\hat{p}_{j,2k+1}\,\left| \beta _{2k+1}^n\right| =c^{-j}\lambda _n^{(1)}(c)|\partial _x^j\psi _n^{(1)}(0)|\le \sqrt{2}\left( \frac{1}{ \sqrt{q_n}}\right) ^{j}\lambda _n^{(1)}(c). \end{aligned}$$
(4.42)

Thus, by (4.37), and (4.3)–(4.4),

$$\begin{aligned} \hat{p}_{jj}^{-1}= \frac{2^{j+2}\sqrt{j}}{\sqrt{2\pi (2j+3)}}\sqrt{\Upsilon _j^{5/2,1}\Upsilon _j^{5/2,3}} \le \Upsilon _j^{5/2,1}\; \frac{2^{j+1}}{\sqrt{\pi }}. \end{aligned}$$
(4.43)

Then we obtain the bound (4.2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, LL., Li, H. et al. Optimal Spectral Schemes Based on Generalized Prolate Spheroidal Wave Functions of Order \(-1\) . J Sci Comput 70, 451–477 (2017). https://doi.org/10.1007/s10915-016-0253-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0253-2

Keywords

Mathematics Subject Classification

Navigation