Skip to main content
Log in

Weighted Finite Fourier Transform Operator: Uniform Approximations of the Eigenfunctions, Eigenvalues Decay and Behaviour

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate two uniform asymptotic approximations as well as some spectral properties of the eigenfunctions of the weighted finite Fourier transform operator, defined by \({\displaystyle {\mathcal {F}}_c^{(\alpha )} f(x)=\int _{-1}^1 e^{icxy} f(y)\,(1-y^2)^{\alpha }\, dy.}\) Here, \( c >0, \alpha \ge -1/2\) are two fixed real numbers. These eigenfunctions are called generalized prolate spheroidal wave functions (GPSWFs) and they are firstly introduced and studied in Wang and Zhang (Appl Comput Harmon Anal 29(3):303–329, 2010). The present study is motivated by the promising concrete applications of the GPSWFs in various scientific area such as numerical analysis, mathematical physics and signal processing. We should mention that these two uniform approximation results of the GPSWFs can be considered as generalizations of the results given in the joint work of one of us (Bonami and Karoui in Constr Approx 43(1):15–45, 2016). As it will be seen, these generalizations require some involved extra work, especially in the case where \(\alpha > 1/2.\) By using the uniform asymptotic approximations of the GPSWFs, we prove the super-exponential decay rate of the eigenvalues of the operator \({\mathcal {F}}_c^{(\alpha )}\) in the case where \(0<\alpha < 3/2.\) Moreover, by computing the trace and an estimate of the norm of the operator \({\displaystyle {\mathcal {Q}}_c^{(\alpha )}=\frac{c}{2\pi } {\mathcal {F}}_c^{{(\alpha )}^*} \circ {\mathcal {F}}_c^{(\alpha )},}\) we give a lower bound for the counting number of the eigenvalues of \(Q_c^{(\alpha )},\) when \(c>>1.\) Finally, we provide the reader with some numerical examples that illustrate the different results of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abreu, L.D., Pereira, J.M.: Pseudo prolate spheroidal function. In: IEEE Proceedings of SampTA, pp. 603–607 (2015)

  2. Abreu, L.D., Bandeira, A.S.: Landau’s necessary conditions for the Hankel transform. J. Funct. Anal. 262(4), 1845–1866 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  4. Area, I., Dimitrov, D.K., Godoy, E., Ronveaux, A.: Zeros of Jacobi functions of second kind. J. Comput. Appl. Math. 188(1), 65–76 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Batir, N.: Inequalities for the gamma function. Arch. Math. 91(6), 554–563 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonami, A., Karoui, A.: Spectral decay of time and frequency limiting operator. Appl. Comput. Harmon. Anal. (2015). doi:10.1016/j.acha.2015.05.003

  7. Bonami, A., Karoui, A.: Uniform approximation and explicit estimates of the Prolate Spheroidal Wave Functions. Constr. Approx. 43(1), 15–45 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyd, J.P.: Approximation of an analytic function on a finite real interval by a band-limited function and conjectures on properties of prolate spheroidal functions. Appl. Comput. Harmon. Anal. 25(2), 168–176 (2003)

    Article  MATH  Google Scholar 

  9. Criscuolo, G., Mastroianni, G., Nevai, P.: Associated generalized Jacobi functions and polynomials. J. Math. Anal. Appl. 158(1), 15–34 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdélyi, A., et al.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  11. Grosjean, C.C.: the weight functions, generating functions and miscellaneous properties of the sequences of orthogonal polynomial of second kind associated with the Jacobi and the Gegenbauer polynomials. J. Comput. Appl. Math. 16(3), 259–307 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grünbaum, F.A., Pacharoni, I., Zurrián, I.N.: Time and band limiting for matrix valued functions, an example. SIGMA 11, 044 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications. Applied and Numerical Harmonic Analysis Series. Birkhäser, Springer, New York (2013)

    Google Scholar 

  14. Karoui, A., Souabni, A.: Generalized prolate spheroidal wave functions: spectral analysis and approximation of almost band-limited functions. J. Fourier Anal. Appl. 22(2), 383–412 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kou, K., Morais, J., Zhang, Y.: Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis. Math. Methods Appl. Sci. 36(9), 1028–1041 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krasikov, I.: Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17(1), 209–225 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Landau, H.J.: On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels. J. Analyse Math. 28(1), 335–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marzo, J.: Marcinkiewicz–Zygmund inequalities and interpolation by spherical harmonics. J. Funct. Anal. 250(2), 559–587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morais, J., Nguyen, H.M., Kou, K.I.: On 3D orthogonal prolate spheroidal monogenics. Math. Methods Appl. Sci. 39(4), 635–648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Olenko, O.Y.: Upper bound on \(\sqrt{x} J_{\nu }(x)\) and its applications. Integr. Transform. Spec. Funct. 17(6), 455–467 (2006)

    Article  MATH  Google Scholar 

  21. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)

    MATH  Google Scholar 

  22. Olver, Frank W., Lozier, Daniel W., Boisvert, Ronald F., Clark, Charles W.: NIST Handbook of Mathematical Functions, 1st edn. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  23. Simons, F.J., Dahlen, F.A.: Spherical Slepian functions on the polar gap in geodesy. Geophys. J. Int. 166, 1039–1061 (2006)

    Article  Google Scholar 

  24. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty I. Bell Syst. Tech. J. 40(1), 43–64 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  25. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst.Tech. J. 43(6), 3009–3057 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Slepian, D.: Some asymptotic expansions for prolate spheroidal wave functions. J. Math. Phys. 44(2), 99–140 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  27. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Colloquium Publications, vol. XXIII, 4th edn. American Mathematical Society, Providence (1975)

    Google Scholar 

  28. Wang, L.L., Zhang, J.: A new generalization of the PSWFs with applications to spectral approximations on quasi-uniform grids. Appl. Comput. Harmon. Anal. 29(3), 303–329 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, London (1966)

    MATH  Google Scholar 

  30. Zayed, A.I.: A generalization of the prolate spheroidal wave functions. Proc. Am. Math. Soc. 135(7), 2193–2203 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank very much the anonymous referee for the valuable comments and suggestions that helped them to improve the revised version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazek Karoui.

Additional information

This work was supported by the DGRST Research Grant UR13ES47 and the CMCU Research Project 15G1504.

Appendices

Appendix 1: Proof of Lemma 3

Let \(\alpha > 1/2\) and let \(j_{\alpha ,1}, j'_{\alpha ,1}\) and \(y_{\alpha ,1}\) denote the first zeros of \(J_{\alpha }(x), J'_{\alpha }(x)\) and \(Y_{\alpha }(x),\) respectively. It is known, see for example [29, p. 487] that

$$\begin{aligned} \alpha< \sqrt{\alpha (\alpha +2)}< j'_{\alpha ,1}< y_{\alpha ,1}< j_{\alpha ,1}. \end{aligned}$$

Moreover, by using the asymptotic behaviours of \(J_{\alpha }(\cdot ), Y_{\alpha }(\cdot ),\) given by (17), one concludes that the function \( x J_{\alpha }(x) |Y_{\alpha }(x)|= - x J_{\alpha }(x) Y_{\alpha }(x) \) is positive and bounded over the interval \((0,\alpha ].\)

Next, we check that for any \(\alpha > 1/2,\) \( X_{\alpha } > \alpha ,\) where \(X_{\alpha }\) is the first root of \( J_{\alpha }(x)+J_{\alpha }(x)=0.\) To this end, we first note that from the Wronskian of \(J_{\alpha }, Y_{\alpha },\) given by (18), one concludes that for any \(\alpha > -1,\) we have

$$\begin{aligned} \frac{\partial }{\partial x}\left( \frac{-Y_{\alpha }(x)}{J_{\alpha }(x)}\right) = -\frac{2}{\pi x J^2_{\alpha }(x)} <0,\quad x >0. \end{aligned}$$
(79)

Also, from [21, p. 438], \(X_{\alpha }\) has the following asymptotic formula, valid for large values of the parameter \(\alpha ,\)

$$\begin{aligned} X_{\alpha } =\alpha + c (\alpha /2)^{1/3} +O(\alpha ^{-1/3}),\quad c\approx 0.366. \end{aligned}$$

Hence, there exists \(\alpha _0 >0 ,\) so that \(X_{\alpha } > \alpha ,\) whenever \( \alpha \ge \alpha _0.\) Hence, we have

$$\begin{aligned} - \frac{ Y_{\nu }(\nu )}{J_{\nu }(\nu )} \ge - \frac{ Y_{\nu }(X_{\nu })}{J_{\nu }(X_{\nu })}=1,\quad \forall \, \nu \ge \alpha _0, \end{aligned}$$

which means that \({\displaystyle \lim _{\nu \rightarrow +\infty } - \frac{ Y_{\nu }(\nu )}{J_{\nu }(\nu )}\ge 1.}\) On the other hand, from [29, p. 487], we have

$$\begin{aligned} \frac{\partial }{\partial \nu }\left( \frac{-Y_{\nu }(\nu )}{J_{\nu }(\nu )}\right) <0,\quad \nu >0. \end{aligned}$$

Consequently, for any \(\alpha \ge 1/2,\) we have

$$\begin{aligned} - \frac{ Y_{\alpha }(\alpha )}{J_{\alpha }(\alpha )} \ge \lim _{\nu \rightarrow +\infty } - \frac{ Y_{\nu }(\nu )}{J_{\nu }(\nu )}\ge 1 = - \frac{ Y_{\alpha }(X_{\alpha })}{J_{\alpha }(X_{\alpha })}, \end{aligned}$$

which means that \( X_{\alpha }> \alpha ,\) whenever \(\alpha \ge 1/2.\) Hence, for \(0<x<\alpha ,\) by integrating (79) over the interval \([x,\alpha ]\) and using the fact that the function \(x J^2_{\alpha }(x)\) is increasing, one gets

$$\begin{aligned} -2 x J_{\alpha }(x) Y_{\alpha }(x)= & {} 2 x J^2_{\alpha }(x) \frac{- Y_{\alpha }(\alpha )}{J_{\alpha }(\alpha )}+ \frac{4}{\pi } \int _x^{\alpha } \frac{x J^2_{\alpha }(x)}{t J^2_{\alpha }(t)}\, dt\nonumber \\\le & {} 2\alpha J^2_{\alpha }(\alpha ) \frac{- Y_{\alpha }(\alpha )}{J_{\alpha }(\alpha )}+ \frac{4\alpha }{\pi },\quad 0<x \le \alpha . \end{aligned}$$
(80)

On the other hand, since \(2 x |J_{\alpha }(x) Y_{\alpha }(x)\le x \left( J^2_{\alpha }(x)+Y^2_{\alpha }(x)\right) ,\) since this later is decreasing for \(\alpha \ge 1/2\) and since \(\alpha < X_{\alpha },\) then we have

$$\begin{aligned} \max \left( \sup _{x\in [\alpha , X_{\alpha }]} -x J_{\alpha }(x) Y_{\alpha }(x); \sup _{x\ge X_{\alpha }} x \left( J^2_{\alpha }(x)+Y^2_{\alpha }(x)\right) \right) \le \alpha \left( J^2_{\alpha }(\alpha )+Y^2_{\alpha }(\alpha )\right) . \end{aligned}$$
(81)

Finally, by combining (80) and (81), one gets the desired bound (21). \(\square \)

Appendix 2: Proof of Lemma 4

The first equality in (32) is a consequence of the following identity, see [22, p. 241]

$$\begin{aligned} \int _0^x t J^2_{\alpha }(t)\, dt = \frac{x^2}{2}\left[ J^2_{\alpha }(x)-J_{\alpha -1}(x)J_{\alpha +1}(x)\right] ,\quad \alpha > -1/2, \end{aligned}$$

combined with the well known identity

$$\begin{aligned} J_{\alpha -1}(x)=\frac{2\alpha }{x}J_{\alpha }(x)-J_{\alpha +1}(x). \end{aligned}$$

Moreover, it has been shown in [16], that for \(\alpha \ge -1/2,\) we have

$$\begin{aligned} \sup _{x\ge 0} x^{3/2}\left| J_{\alpha }(x)-\sqrt{\frac{2}{\pi x}} \Big ( \cos \left( x-(\alpha +1/2)\frac{\pi }{2}\right) \Big )\right| \le \frac{4}{5} \mu _{\alpha }. \end{aligned}$$
(82)

Hence, by using the previous inequality, one gets

$$\begin{aligned}&\left| J_{\nu }^2(x)-\frac{2}{\pi x} \cos \Big (x-\Big (\nu +\frac{1}{2}\Big )\frac{\pi }{2}\Big )\right| \le \frac{4}{5 x^{3/2}}\mu _{\alpha } \left( |J_{\nu }(x)|+\sqrt{\frac{2}{\pi x}}\right) ,\nonumber \\&\quad x\ge 1,\quad \nu = \alpha ,\, \alpha +1. \end{aligned}$$
(83)

Moreover, from (82), one gets

$$\begin{aligned} |J_{\nu }(x)| \le \frac{4}{5} \mu _{\nu }+\sqrt{\frac{2}{\pi x}},\quad x\ge 1. \end{aligned}$$
(84)

By using the previous two inequalities, one obtains

$$\begin{aligned} \left| J^2_{\alpha }(x)+J^2_{\alpha +1}(x)-\frac{2}{\pi x}\right| \le \frac{8}{5} \sqrt{\frac{2}{\pi }} \frac{1}{x^2}\Big (\mu _{\alpha }+\mu _{\alpha +1}\Big )+\frac{16}{25 x^3}\Big (\mu ^2_{\alpha }+\mu ^2_{\alpha +1}\Big ),\quad x\ge 1. \end{aligned}$$

Hence, we have

$$\begin{aligned}&{\frac{x^2}{2}\left| J^2_{\alpha }(x)+J^2_{\alpha +1}(x)-\frac{2\alpha }{x} J_{\alpha }(x)J_{\alpha +1}(x)-\frac{2}{\pi x}\right| }\nonumber \\&\quad \le \frac{4}{5} \sqrt{\frac{2}{\pi }} \frac{1}{x^2}\Big (\mu _{\alpha }+\mu _{\alpha +1}\Big )+\frac{8}{25 x}\Big (\mu ^2_{\alpha }+\mu ^2_{\alpha +1}\Big )+|\alpha | x|J_{\alpha }(x)J_{\alpha +1}(x)| ,\quad x \ge 1.\quad \quad \quad \end{aligned}$$
(85)

Finally, by combining (31) and the previous inequality, one gets a bound of \(|\eta _{\alpha }(x)|\) for \(x\ge 1.\) To get a bound \(\eta _{\alpha }(x)\) over the interval [0, 1],  it suffices to note that from (32), we have

$$\begin{aligned} \sup _{x\in [0,1]} |\eta '_{\alpha }(x)|=\sup _{x\in [0,1]} \left| x J^2_{\alpha }(x) -\frac{1}{\pi }\right| \le \max \left( \frac{1}{\pi }, c^2_{\alpha }-\frac{1}{\pi }\right) . \end{aligned}$$

Since \(\eta _{\alpha }(0)=0,\) then the previous bound is also valid for \({\displaystyle \sup _{x\in [0,1]} |\eta _{\alpha }(x)| },\) that is

$$\begin{aligned} |\eta _{\alpha }(x)|\le \max \left( \frac{1}{\pi }, c^2_{\alpha }-\frac{1}{\pi }\right) ,\quad 0\le x\le 1. \end{aligned}$$
(86)

Finally, to conclude for the proof of the lemma, it suffices to combine (31), (85) and (86). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karoui, A., Souabni, A. Weighted Finite Fourier Transform Operator: Uniform Approximations of the Eigenfunctions, Eigenvalues Decay and Behaviour. J Sci Comput 71, 547–570 (2017). https://doi.org/10.1007/s10915-016-0310-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0310-x

Keywords

Mathematics Subject Classification

Navigation