Skip to main content
Log in

Hind Limb Bone Proportions Reveal Unexpected Morphofunctional Diversification in Xenarthrans

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Divergence in forelimb morphology is often associated with functional habits exhibited within the Xenarthra, ranging from terrestrial-digging in armadillos to arboreal-suspension in sloths. We hypothesized that quantitative differences in hind limb form also will be predictive of the diverse lifestyles observed in this small clade. A total of 26 morphofunctional indices were calculated from 42 raw measurements of bone length/width/depth in a sample of N = 76 skeletal specimens (18 species). Index data for each species were categorized by substrate preference and use and then evaluated using a combination of stepwise Discriminant Function Analysis (DFA) and Principal Component Analysis (PCA) to determine significant osteological correlates (traits) among extant taxa. Additionally, character states of the morphometric data were inferred using a recent hypothesis of xenarthran phylogeny. DFA determined 14 distinct morphofunctional indices relating to femur robustness, hip/ankle/limb mechanical advantage, and foot and claw length as the most discriminating features. PCA clearly separated armadillos from sloths in morphospace based on overall robustness versus gracility, as well as proximal versus distal lengths of skeletal elements (including the claws), whereas these characteristics were intermediate in the hind limbs of anteaters and selected armadillos having either a larger greater trochanter or modified foot/claw proportions. Two-toed and three-toed sloths showed further separation from each other in morphospace primarily driven by proportions of their tibia and hind feet despite evidence of convergence for numerous functional traits. Moreover, the majority of the traits measured had significant phylogenetic signal and several of these indicated clear patterns of convergent and divergent evolution in xenarthrans by evaluation of their tip states. Our assessments expand functional interpretations of xenarthran limb form and identify potentially conserved and secondarily modified traits related to fossoriality across taxa, including in three-toed sloths, demonstrate possible morphological trade-offs between digging and climbing habits, and suggest derived traits adapted for arboreal lifestyle and suspensory function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from the a femur, b proximal femur, c tibio-fibula, d tibia, e hind foot, f calcaneus, and g claw. The measurements shown here were used for index calculations: FL, femur length; FMW, femur mid-shaft width; FMD, femur mid-shaft depth; FHL, femur head length; FHW, femur head width; FHD, femur head depth; PFL, proximal femur length; GTL, greater trochanter length; GTW, greater trochanter width; FCW, femur condylar width; FCL-M, femur condylar length-medial; FCD-M, femur condylar depth-medial; FCL-L, femur condylar length-lateral; FBL, fibula length; TL, tibia length; TMW, tibia mid-shaft width; TMD, tibia mid-shaft depth; TPEW, tibia proximal end width; TDED, tibia distal end depth; TDEW, tibia distal end width; MML, medial malleolus length; MMW, medial malleolus width; MT3L, third metatarsal length; MT3W, third metatarsal width; PP3L, proximal phalanx length of digit III; PP3W, proximal phalanx width of digit III; CL, calcaneus length; PC3L, pes claw length of digit III. Greater trochanter depth and femur condylar depth (lateral) are not illustrated. Selected measurements adapted from Salton and Sargis (2009)

Fig. 2

Adapted from Gibb et al. (2016)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data generated for this study are included in this published article in adherence with disclosure policy of the journal. The authors also share condensed osteological and index data as a supplement. Additional raw data is available upon reasonable request.

References

  • Abba AM, Superina M (2016) Dasypus hybridus (Cingulata: Dasypodidae). Mammal Species 48:10-20

    Article  Google Scholar 

  • Attias N, Miranda FR, Sena LMM, Tomas WM, Mourão GM (2016) Yes, they can! Three-banded armadillos Tolypeutes sp. (Cingulata: Dasypodidae) dig their own burrows. Zoologia (Curitiba) 33:1-8

    Article  Google Scholar 

  • Beebe W (1926) The three-toed sloth. Bradypus cuculliger cuculliger Wagler. Zoologica 7:1-67

    Google Scholar 

  • Biewener AA (2005) Biomechanical consequences of scaling. J Exp Biol 208:1665-1676

    Article  PubMed  Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717-745

    PubMed  Google Scholar 

  • Borghi CE, Campos CM, Giannoni SM, Campos VE, Sillero-Zubiri C (2011) Updated distribution of the pink fairy armadillo Chlamyphorus truncatus (Xenarthra, Dasypodidae), the world's smallest armadillo. Edentata 12:14-19

    Article  Google Scholar 

  • Britton SW (1941) Form and function in the sloth. Q Rev Biol 16:13-34

    Article  Google Scholar 

  • Carillo E, Fuller TK, Saenz JC (2009) Jaguar (Panthera onca) hunting activity: effects of prey distribution and availability. J Trop Ecol 25:563-567

    Article  Google Scholar 

  • Carter TS, Superina M, Leslie DM Jr (2016) Priodontes maximus (Cingulata: Chlamyphoridae). Mammal Species 48:21-34

    Article  Google Scholar 

  • Clerici GP, Rosa PS, Costa FR (2018) Description of digging behavior in armadillos Dasypus novemcinctus (Xenarthra: Dasypodidae). Mastozool Neotrop 25:283-291.

    Article  Google Scholar 

  • Copploe JV II, Blob RW, Parrish JHA, Butcher MT (2015) In vivo strains in the femur of the nine-banded armadillo (Dasypus novemcinctus). J Morphol 276:889-899

    Article  PubMed  Google Scholar 

  • Costa FR, Clerici GP, Lobo-Ribiero L, Rosa PS, Rocha-Barbosa O (2019) Analysis of the spatio-temporal parameters of gaits in Dasypus novemcinctus (Xenarthra: Dasypodidae). Acta Zool 100:61-68

    Article  Google Scholar 

  • Costa FR, Clerici GP, Rosa PS, Lobo-Ribiero L, Rocha-Barbosa O (2017) Kinematic description of the vertical climbing of Dasypus novemcinctus (Xenarthra, Dasypodidae): the first report of this ability in armadillos. Mastozool Neotrop 24:451-456

    Google Scholar 

  • Delsuc F, Kuch M, Gibb GC, Karpinski E, Hackenberger D, Szpak P, Billet G (2019) Ancient mitogenomes reveal the evolutionary history and biogeography of sloths. Curr Biol 29:2031-2042

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Scally M, Madsen O, Stanhope MJ, de Jong WW, Catzeflis FM, Springer MS, Douzery EJP (2002) Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Mol Biol Evol 19:1656-1671

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Stanhope MJ, Douzery EJP (2003) Molecular systematics of armadillos (Xenarthra, Dasypodidae): contribution of maximum likelihood and Bayesian analyses of mitochondrial and nuclear genes. Mol Phylogenet Evol 28:261-275

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Vizcaíno SF, Douzery EJP (2004) Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evol Biol 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Desbiez ALJ, Massocato GF, Kluyber D, Santos RCF (2018) Unraveling the cryptic life of the southern naked-tailed armadillo, Cabassous unicinctus squamicaudis (Lund, 1845), in a Neotropical wetland: home range, activity pattern, burrow use and reproductive behaviour. Mammal Biol 91:95-103

    Article  Google Scholar 

  • Echeverría AI, Becerra F, Vassallo AI (2014) Postnatal ontogeny of limb proportions and functional indices in the subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae). J Morphol 275:902-913

    Article  PubMed  Google Scholar 

  • Engelmann GF (1985) The phylogeny of the Xenarthra. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 51-64

    Google Scholar 

  • Enger PS, Bullock TH (1965) Physiological basis of slothfulness in the sloth. Hvalradets Skriftet 48:143-160

    Google Scholar 

  • Fariña RA, Vizcaíno SF, Bargo MS (1998) Body mass estimations in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna. Mastozool Neotrop 5:87-108

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1-15

    Article  Google Scholar 

  • Gaudin TJ, Croft DA (2015) Paleogene Xenarthra and the evolution of South American mammals. J Mammal 96:622-634

    Article  Google Scholar 

  • Gaudin TJ, McDonald HG (2008) Morphology-based investigations of the phylogenetic relationships among extant and fossil xenarthrans. In: SF Vizcaíno, WJ Loughry (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 24-36

    Google Scholar 

  • Gibb GC, Condamine FL, Kuch M, Enk J, Moraes-Barros N, Superina M, Poinar HN, Delsuc F (2016) Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living xenarthrans. Mol Biol Evol 33:621-642

    Article  CAS  PubMed  Google Scholar 

  • Goffart M (1971) Function and Form in the Sloth. Pergamon Press, Oxford, 225 pp

    Google Scholar 

  • Gorvet MA, Wakeling JM, Morgan DM, Hidalgo Segura D, Avey-Arroyo JA, Butcher MT (2020) Keep calm and hang on: EMG activation in the forelimb musculature of three-toed sloths. J Exp Biol 223. https://doi.org/10.1242/jeb.21837

  • Granatosky MC, Karantanis NE, Rychlik L, Youlatos D (2018) A suspensory way of life: integrating locomotion, postures, limb movements, and forces in two-toed sloths Choloepus didactylus (Megalonychidae, Folivora, Pilosa). J Exp Zool 329:570-588

    Article  Google Scholar 

  • Greegor DH Jr (1985) Ecology of the little hairy armadillo Chaetophractus vellerosus. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 397-405

    Google Scholar 

  • Hamlett GWD (1939) Identity of Dasypus septemcinctus Linnaeus with notes on some related species. J Mammal 20:328-336

    Article  Google Scholar 

  • Hanna JB, Granatosky MC, Rana P, Schmitt D (2017) The evolution of vertical climbing in primates: evidence from reaction forces. J Exp Biol 220:3039-3052

    PubMed  Google Scholar 

  • Hayssen V (2011) Tamandua tetradactyla (Pilosa: Myrmecophagidae). Mammal Species 43:64-74

    Article  Google Scholar 

  • Hayssen V, Miranda F, Pasch B (2012) Cyclopes didactylus (Pilosa: Cyclopedidae). Mammal Species 44:51-58

    Article  Google Scholar 

  • Hildebrand M (1985) Digging of quadrupeds. In: Hildebrand M, Bramble KF, Wake DB (eds) Functional Vertebrate Morphology. Harvard University Press, Cambridge, pp 89-109

    Chapter  Google Scholar 

  • Kilbourne BM, Hutchinson JR (2019) Morphological diversification of biomechanical traits: mustelid locomotor specialization and macroevolution of long bone cross-sectional morphology. BMC Evol Biol 19:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kley NJ, Kearney M (2007) Adaptations for digging and burrowing. In: Hall BK (ed) Fins into Limbs: Evolution, Development, and Transformation. University of Chicago Press, Chicago and London, pp 284-309

    Google Scholar 

  • Loughry WJ, McDonough CM (2013) The Nine-banded Armadillo: A Natural History. University of Oklahoma Press, Norman

    Google Scholar 

  • Marechal G, Goffart M, Aubert X (1963) Nouvelles recherches sur les proprieties du muscle squelettiques de Paresseux (Choloepus hoffmanni Peters). Arch Int Physiol Bioch 71:236-40

    CAS  Google Scholar 

  • Marshall SK, Superina M, Spainhower KB, Butcher MT (2020) Forelimb myology of armadillos (Xenarthra: Cingulata, Chlamyphoridae): anatomical correlates with fossorial ability. J Anat. https://doi.org/10.1111/joa.13326

    Article  PubMed  Google Scholar 

  • Martin ML, Travouillon KJ, Sherratt E, Fleming PA, Warburton NM (2019) Covariation between forelimb muscle anatomy and bone shape in an Australian scratch-digging marsupial: comparison of morphometric methods. J Morphol 280:1900-1915

    Article  PubMed  Google Scholar 

  • McNab BK (1984) Physiological convergence amongst ant-eating and termite-eating mammals. J Zool 203:485-510

    Article  Google Scholar 

  • Melchor RN, Genise JF, Umazano AM, Superina M (2012) Pink fairy armadillo meniscate burrows and ichnofabrics from Miocene and Holocene interdune deposits of Argentina: paleoenvironmental and paleoecological significance. Paleogeogr Paleoclimatol Paleoecol 350-352:149-170

    Article  Google Scholar 

  • Mendel FC (1981) Use of hands and feet of two-toed sloths (Choloepus hoffmanni) during climbing and terrestrial locomotion. J Mammal 62:413-421

    Article  Google Scholar 

  • Mendel FC (1985) Use of hands and feet of three-toed sloths (Bradypus variegatus) during climbing and terrestrial locomotion. J Mammal 66:359-366

    Article  Google Scholar 

  • Miles SS (1941) The shoulder anatomy of the armadillo. J Mammal 22:157-169

    Article  Google Scholar 

  • Milne N, Toledo N, Vizcaíno SF (2011) Allometric and group differences in the xenarthran femur. J Mammal Evol 19:199-208

    Article  Google Scholar 

  • Minoprio JDL (1945) Sobre el Chlamyphorus truncatus Harlan. Acta Zool Lilloana 3:5-58

    Google Scholar 

  • Miranda FR, Casali DM, Perini FA, Machado FA, Santos FR (2017) Taxonomic review of the genus Cyclopes Gray, 1821 (Xenarthra: Pilosa), with the revalidation and description of new species. Zool J Linnean Soc 183:687-721

    Article  Google Scholar 

  • Montgomery GG, Sunquist ME (1975) Impact of sloths on Neotropical forest energy flow and nutrient cycling. In: Golley FB, Medina E (eds) Tropical Ecological Systems: Trends in Terrestrial and Aquatic Research. Springer-Verlag, New York, pp 69-98

  • Montoya-Sanhueza G, Wilson LAB, Chinsamy A (2019) Postnatal development of the largest subterranean mammal (Bathygerus suillus): morphology, osteogenesis, and modularity of the appendicular skeleton. Dev Dyn 248:1101-1128

    Article  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409:614-618

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348-2351

    Article  CAS  PubMed  Google Scholar 

  • Nowak RM (1999) Walker’s Mammals of the World. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Nyakatura JA (2012) The convergent evolution of suspensory posture and locomotion in tree sloths. J Mammal Evol 19:225-234

    Article  Google Scholar 

  • Nyakatura JA, Fischer MS (2011) Functional morphology of the muscular sling at the pectoral girdle in tree sloths: convergent morphological solutions to new functional demands? J Anat 319:360-374

    Article  Google Scholar 

  • Nyakatura JA, Petrovitch A, Fischer MS (2010) Limb kinematics during locomotion in the two-toed sloth (Choloepus hoffmanni, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus. Zoology 113:221-234

    Article  PubMed  Google Scholar 

  • Olson RA, Glenn ZD, Cliffe RN, Butcher MT (2018) Architectural properties of sloth forelimb muscles (Pilosa: Bradypodidae). J Mammal Evol 25:573-588

    Article  Google Scholar 

  • Olson RA, Womble MD, Thomas DR, Glenn ZD, Butcher MT (2016) Functional morphology of the forelimb of the nine-banded armadillo (Dasypus novemcinctus): comparative perspectives on the myology of Dasypodidae. J Mammal Evol 23:49-69

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Revell LJ (2011) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217-223

    Article  Google Scholar 

  • Richard-Hansen C, Vié JC, Vidal N, Kéravec J (1999) Body measurements on 40 species of mammals from French Guiana. J Zool 247:419-428

    Article  Google Scholar 

  • Rood JP (1970) Notes on the behavior of the pygmy armadillo. J Mammal 51:179

    Article  Google Scholar 

  • Rose J, Moore A, Russell A, Butcher M (2014) Functional osteology of the forelimb digging apparatus of badgers. J Mammal 95:543-558

    Article  Google Scholar 

  • Salton JA, Sargis EJ (2009) Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton. J Morphol 270:367-387

    Article  PubMed  Google Scholar 

  • Salton JA, Szalay FS (2004) The tarsal complex of Afro-Malagasy Tenrecoidea: a search for phylogenetically meaningful characters. J Mammal Evol 11:73-104.

    Article  Google Scholar 

  • Samuels JX, Van Valkenburgh B (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269:1387-1411

    Article  PubMed  Google Scholar 

  • Sargis EJ (2002) Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 254:149-185

    Article  PubMed  Google Scholar 

  • Scheidt A, Wolfer J, Nyakatura JA (2019) The evolution of femoral cross-sectional properties in sciuromorphic rodents: influence of body and locomotor ecology. J Morphol 280:1156-1169

    PubMed  Google Scholar 

  • Silveira L, de Almeida Jácomo AT, Furtado MM, Torres NM, Sollmann R, Vynne C (2009) Ecology of the giant armadillo (Priodontes maximus) in the grasslands of central Brazil. Edentata 8-10:25-34

    Article  Google Scholar 

  • Smith P (2009) FAUNA Paraguay Handbook of the Mammals of Paraguay. http://www.faunaparaguay.com

  • Spainhower KB, Cliffe RN, Metz AK, Barkett EM, Kiraly P, Thomas DR, Kennedy S, Avey-Arroyo J, Butcher MT (2018) Cheap labor: myosin fiber type expression and enzyme activity in the forelimb musculature of sloths (Pilosa: Xenarthra). J Appl Physiol 125:799-811

    Article  CAS  PubMed  Google Scholar 

  • Spainhower KB, Metz AK, Yusuf ARS, Johnson LE, Avey-Arroyo J, Butcher MT (2020) Coming to grips with life upside down: how myosin fiber type and metabolic properties of sloth hindlimb muscles contribute to suspensory function. J Comp Physiol B. https://doi.org/10.1007/s00360-020-01325-x

    Article  PubMed  Google Scholar 

  • Superina M (2008) The natural history of the pichi, Zaedyus pichiy, in western Argentina. In: Vizcaíno SF, Loughry WJ (eds) The Biology of The Xenarthra. University Press of Florida, Gainesville, pp 313-318

  • Superina M, Loughry WJ (2015) Why do xenarthrans matter? J Mammal 96:617-621

    Article  Google Scholar 

  • Szalay FS, Sargis EJ (2001) Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23:139-302

    Google Scholar 

  • Taylor BK (1978) The anatomy of the forelimb in the anteater (Tamandua) and its functional implications. J Morphol 157:347-367

    Article  PubMed  Google Scholar 

  • Toledo N, Bargo MS, Cassini GH, Vizcaíno SF (2012) The forelimb of early Miocene sloths (Mammalia, Xenarthra, Folivora): morphometrics and functional implications for substrate preferences. J Mammal Evol 19:185-198

    Article  Google Scholar 

  • Toledo N, Cassini GH, Vizcaíno SF, Bargo, MS (2014) Mass estimation in Santacrucian sloths from the early Miocene Santa Cruz Formation of Patagonia, Argentina. Acta Palaeontol Pol 59:267-280

    Google Scholar 

  • Urbani B, Bosque C (2007) Feeding ecology and postural behavior of the three-toed sloth (Bradypus variegatus flaccidus) in northern Venezuela. Mammal Biol 72:321-329

    Article  Google Scholar 

  • Vizcaíno SF, Fariña RA, Mazzetta GV (1999) Ulnar dimensions and fossoriality in armadillos. Acta Theriol 44:309-320

    Article  Google Scholar 

  • Vizcaíno SF, Milne N (2002) Structure and function in armadillo limbs (Mammalia: Xenarthra: Dasypodidae). J Zool 257:117-127

    Article  Google Scholar 

  • Wetzel RM (1985) The identification and distribution of recent Xenarthra (Edentata). In: Montogomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 5-21

    Google Scholar 

Download references

Acknowledgments

We sincerely thank Darren Lunde (NMNH), Eileen Westwig (AMNH), and Bruce Patterson and Lauren Smith (FMNH) for coordinating access to museum collections. We thank The Sloth Sanctuary of Costa Rica for the opportunity to harvest bones from frozen sloth specimens. Thanks to the Instituto de Medicina y Biología Experimental de Cuyo, Mendoza, Argentina for access to rare armadillo specimens. Special thanks to Mykaela Wagner, Brooke Copland, Amber Landsman, Lindsey Moon, Chris Riwniak, Jacob Aiello, and Jessica Yeager for assistance with data collection and data entry. Portions of the work were submitted as a Masters Thesis by S.K.M.. The YSU Department of Biological Sciences and College of STEM are also gratefully acknowledged.

Funding

This work was supported by a Journal of Experimental Biology Travelling Fellowship to S.K.M. award number JEBTF-170817.

Author information

Authors and Affiliations

Authors

Contributions

S.K.M. developed the concepts and experimental approach, collected and analyzed data, and drafted and edited the manuscript; K.B.S collected data and revised the manuscript; B.T.S. developed the analytical approach, analyzed data, and edited the manuscript; T.P.D. developed the analytical approach, analyzed data, and edited the manuscript; M.T.B. developed the concepts and approach, collected and analyzed data, and drafted and revised the manuscript.

Corresponding author

Correspondence to Michael T. Butcher.

Ethics declarations

Conflict of Interests

The authors declare no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 33 KB)

Supplementary file2 (DOCX 180 KB)

Appendix 1

Appendix 1

List of skeletal specimens and museum collection or origin. Museum acronyms are as follows: NMNH, National Museum of Natural History (Washington D.C. USA); AMNH, American Museum of Natural History (New York, NY USA); FMNH, Field Museum of Natural History (Chicago, IL USA).

Species

Museum

Specimen

Number

Tolypeutes matacus

NMNH

583,927

Tolypeutes matacus

NMNH

291,935

Tolypeutes matacus

NMNH

598,002

Tolypeutes matacus

AMNH

248,394

Priodontes maximus

NMNH

261,024

Priodontes maximus

NMNH

270,373

Priodontes maximus

NMNH

299,630

Chaetophractus villosus

NMNH

396,655

Chaetophractus villosus

NMNH

543,430

Chaetophractus villosus

NMNH

155,411

Chaetophractus villosus

FMNH

153,772

Chaetophractus villosus

FMNH

134,611

Chaetophractus villosus

FMNH

60,467

Chaetophractus vellerosus

Cve1a

Chlamyphorus truncatus

Ct1a

Zaedyus pichiy

FMNH

153,782

Zaedyus pichiy

FMNH

104,817

Zaedyus pichiy

FMNH

23,809

Zaedyus pichiy

FMNH

15,626

Cabassous centralis

FMNH

121,224

Cabassous centralis

FMNH

134,458

Cabassous unicinctus

AMNH

209,943

Cabassous unicinctus

AMNH

133,314

Cabassous unicinctus

AMNH

133,317

Cabassous unicinctus

AMNH

23,441

Euphractus sexcinctus

NMNH

256,115

Euphractus sexcinctus

NMNH

258,603

Euphractus sexcinctus

NMNH

257,968

Dasypus septemcinctus*

AMNH

133,258

Dasypus hybridus

AMNH

205,708

Dasypus hybridus

AMNH

205,707

Dasypus novemcinctus

Dn1b

Dasypus novemcinctus

Dn2b

Dasypus novemcinctus

Dn3b

Dasypus novemcinctus

Dn4b

Dasypus novemcinctus

NMNH

053,321

Dasypus novemcinctus

NMNH

240,091

Dasypus novemcinctus

NMNH

A49398

Cyclopes didactylus

NMNH

304,941

Cyclopes didactylus

NMNH

283,876

Cyclopes didactylus

NMNH

012,097

Cyclopes didactylus

NMNH

200,353

Cyclopes didactylus

AMNH

139,228

Cyclopes didactylus

AMNH

130,107

Cyclopes didactylus

AMNH

97,317

Cyclopes didactylus

FMNH

51,889

Tamandua tetradactyla

NMNH

589,602

Tamandua tetradactyla

NMNH

172,999

Tamandua tetradactyla

NMNH

339,663

Tamandua tetradactyla

NMNH

21,658

Tamandua tetradactyla

AMNH

211,662

Tamandua tetradactyla

AMNH

96,258

Tamandua tetradactyla

AMNH

150,733

Tamandua tetradactyla

FMNH

256,759

Bradypus variegatus

Bv1c

Bradypus variegatus

Bv2c

Bradypus variegatus*

Bv3c

Bradypus variegatus

Bv4c

Bradypus variegatus

Bv5c

Bradypus variegatus*

Bv6c

Bradypus variegatus

Bv7c

Bradypus variegatus

Bv8c

Bradypus tridactylus

FMNH

93,296

Bradypus tridactylusd

AMNH

130,106

Bradypus tridactylus

AMNH

74,136

Choloepus hoffmanni

Ch3-Rc

Choloepus hoffmanni

Ch3-Lc

Choloepus hoffmanni

Ch5c

Choloepus hoffmanni

Ch7c

Choloepus hoffmanni

Ch8c

Choloepus hoffmanni

Ch9c

  1. *Juvenile specimen
  2. Specimen sources:
  3. aInstituto de Medicina y Biología Experimental de Cuyo Mendoza, Argentina
  4. bPrevious study (Copploe et al. 2015)
  5. cThe Sloth Sanctuary, Costa Rica; bone specimens stored in PI freezer R-L, right and left
  6. dSub-adult specimen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marshall, S.K., Spainhower, K.B., Sinn, B.T. et al. Hind Limb Bone Proportions Reveal Unexpected Morphofunctional Diversification in Xenarthrans. J Mammal Evol 28, 599–619 (2021). https://doi.org/10.1007/s10914-021-09537-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-021-09537-w

Keywords

Navigation