Skip to main content

Advertisement

Log in

Inferring the palaeobiology of palorchestid marsupials through analysis of mammalian humeral and femoral shape

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The relationship between ecology and morphology of the limbs in living placental mammals is well established and has been used to infer aspects of palaeobiology for many extinct species. However, few studies have applied these principles to extinct marsupials. Palorchestids are a poorly understood extinct family of megafaunal marsupials of particular interest due to their highly robust and unusual limb morphology. Using a comparative sample of humeri and femora from living mammals potentially analogous to palorchestids, we applied three-dimensional geometric morphometric techniques in a phylogenetic comparative framework. We established that humerus and femur shape in living species showed significant associations with size, phylogeny, and substrate use, and found a weak association between humeral shape and diet. We then examined patterns in morphological disparity, modularity, covariance and morphospace occupation in palorchestids relative to comparative living mammals as well as their closest extinct marsupial relatives. We found palorchestid femora to be unremarkable in shape, while their overall and proximal humeral morphology were strongly divergent from all other mammals sampled. Over their evolutionary history, palorchestid distal humeri increasingly resembled those of mammals adapted for tearing and hook-and-pull digging, while other analyses showed various arboreal-like and fossorial-like affinities in humeral shape. Our findings indicate strong asymmetric selection acting on the fore- and hindlimbs in palorchestids, and their unique combination of shape traits suggests they used their forelimbs in a specialised manner that has no direct equivalence either with their extinct relatives or among other mammals alive today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All code and data associated with this study are available in the Online Resources and from Figshare (10.26180/19946171), with specimen 3D meshes available on Morphosource.org where possible (project ID: 000445426).

References

  • Adams DC (2014) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63(5):685-697

    Article  PubMed  Google Scholar 

  • Adams DC, Collyer M, Kaliontzopoulou A, Baken E (2021) Geomorph: Software for geometric morphometric analyses. R package version 4.0. edn. https://cran.r-project.org/package=geomorph. Accessed 19 Jan 2022

  • Adams DC, Collyer ML (2018) Phylogenetic ANOVA: Group-clade aggregation, biological challenges, and a refined permutation procedure. Evolution 72(6):1204-1215 https://doi.org/10.1111/evo.13492

    Article  PubMed  Google Scholar 

  • Adams DC, Collyer ML (2019) Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73(12):2352-2367 https://doi.org/10.1111/evo.13867

    Article  PubMed  Google Scholar 

  • Adams DC, Felice RN (2014) Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS ONE 9(4):e94335 https://doi.org/10.1371/journal.pone.0094335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams NF, Gray T, Purnell MA (2020) Dietary signals in dental microwear of predatory small mammals appear unaffected by extremes in environmental abrasive load. Palaeogeogr Palaeoclimatol Palaeoecol 558:109929 https://doi.org/10.1016/j.palaeo.2020.109929

    Article  Google Scholar 

  • Archer M (1984) The Australian marsupial radiation. In: Archer M, Clayton G (eds) Vertebrate Zoogeography and Evolution in Australasia. Hesperian Press, Victoria Park, Australia, pp 633-808

  • Bardua C, Wilkinson M, Gower DJ, Sherratt E, Goswami A (2019) Morphological evolution and modularity of the caecilian skull. BMC Evol Biol 19(1):1-23

    Article  Google Scholar 

  • Bargo MS (2003) Biomechanics and palaeobiology of the Xenarthra: the state of the art. Senckenb Biol 83(1):41-50

    Google Scholar 

  • Beck RMD, Louys J, Brewer P, Archer M, Black KH, Tedford RH (2020) A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes). Sci Rep 10(1):9741 https://doi.org/10.1038/s41598-020-66425-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck RMD, Voss R, Jansa S (2022) Craniodental morphology and phylogeny of marsupials. Bull Am Mus Nat Hist 457:1–350 https://doi.org/10.31233/osf.io/rph78

  • Bell MA, Lloyd GT (2015) strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58(2):379-389 https://doi.org/10.1111/pala.12142

    Article  Google Scholar 

  • Black K (2006) Description of new material for Propalorchestes novaculacephalus (Marsupialia: Palorchestidae) from the mid Miocene of Riversleigh, northwestern Queensland. Alcheringa 30(2):351-361

    Article  Google Scholar 

  • Black K (2008) Diversity, phylogeny and biostratigraphy of diprotodontoids (Marsupialia: Diprotodontidae, Palorchestidae) from the Riversleigh World Heritage Area. Dissertation, University of New South Wales

    Google Scholar 

  • Blender Online Community (2021) Blender. 2.79 edn. Blender Foundation, Belgium

  • Blomberg SP, Garland Jr T, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57(4):717-745

    PubMed  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York

    Book  Google Scholar 

  • Camens AB, Wells RT (2010) Palaeobiology of Euowenia grata (Marsupialia: Diprotodontinae) and its presence in northern South Australia. J Mamm Evol 17(1):3-19 https://doi.org/10.1007/s10914-009-9121-2

    Article  Google Scholar 

  • Campione NE, Evans DC (2012) A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol 10(1):60 https://doi.org/10.1186/1741-7007-10-60

    Article  PubMed  PubMed Central  Google Scholar 

  • Cascini M (2020) Evolution of Marsupial Biodiversity. Dissertation, Queensland University of Technology

    Book  Google Scholar 

  • Coombs MC (1983) Large mammalian clawed herbivores: A comparative study. Trans Am Philos Soc 73(7):1-96

    Article  Google Scholar 

  • Covert HH, Kay RF (1981) Dental microwear and diet: implications for determining the feeding behaviors of extinct primates, with a comment on the dietary pattern of Sivapithecus. Am J Phys Anthropol 55(3):331-336

    Article  CAS  PubMed  Google Scholar 

  • Davis A, Archer M (1997) Palorchestes azael (Mammalia, Palorchestidae) from the late Pleistocene Terrace Site Local Fauna, Riversleigh, northwestern Queensland. Mem Qld Mus 41:315-320

    Google Scholar 

  • Den Boer W, Campione NE, Kear BP (2019) Climbing adaptations, locomotory disparity and ecological convergence in ancient stem ‘kangaroos’. R Soc Open Sci 6(2):181617

    Article  Google Scholar 

  • DeSantis LRG, Field JH, Wroe S, Dodson JR (2017) Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change. Paleobiology 43(2):1-15 https://doi.org/10.1017/pab.2016.50

    Article  Google Scholar 

  • Doran DM (1997) Ontogeny of locomotion in mountain gorillas and chimpanzees. J Hum Evol 32(4):323-344 https://doi.org/10.1006/jhev.1996.0095

    Article  CAS  PubMed  Google Scholar 

  • Etienne C, Filippo A, Cornette R, Houssaye A (2021) Effect of mass and habitat on the shape of limb long bones: A morpho-functional investigation on Bovidae (Mammalia: Cetartiodactyla). J Anat 238(4):886-904 https://doi.org/10.1111/joa.13359

    Article  PubMed  Google Scholar 

  • Fabre A-C, Cornette R, Goswami A, Peigné S (2015a) Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J Anat 226(6):596-610 https://doi.org/10.1111/joa.12315

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabre A-C, Salesa MJ, Cornette R, Antón M, Morales J, Peigné S (2015b) Quantitative inferences on the locomotor behaviour of extinct species applied to Simocyon batalleri (Ailuridae, Late Miocene, Spain). Sci Nat 102(5-6):30

    Article  Google Scholar 

  • Fariña RA, Vizcaíno SF, Bargo MS (1998) Body mass estimations in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna. Masozool Neotrop 5(2):87-108

    Google Scholar 

  • Figueirido B, Martín-Serra A, Janis CM (2016) Ecomorphological determinations in the absence of living analogues: the predatory behavior of the marsupial lion (Thylacoleo carnifex) as revealed by elbow joint morphology. Paleobiology 42(03):508-531 https://doi.org/10.1017/pab.2015.55

    Article  Google Scholar 

  • Flannery TF, Archer M (1985) Palorchestes: Large and small palorchestids. In: Rich PV, Van Tets GF, Knight F (eds) Kadimakara: Extinct Vertebrates of Australia. Pioneer Design Studio, Melbourne, Victoria, pp 234–239

  • Fruciano C, Celik MA, Butler K, Dooley T, Weisbecker V, Phillips MJ (2017) Sharing is caring? Measurement error and the issues arising from combining 3D morphometric datasets. Ecol Evol 7(17):7034-7046

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujiwara S-i, Hutchinson JR (2012) Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods. Proc R Soc B 279(1738):2561-2570

    Article  Google Scholar 

  • Gasc J-P (2001) Comparative aspects of gait, scaling and mechanics in mammals. Comp Biochem Physiol, A: Mol Integr Physiol 131(1):121-133 https://doi.org/10.1016/S1095-6433(01)00457-3

    Article  CAS  PubMed  Google Scholar 

  • Gaubert P, Antunes A, Meng H, Miao L, Peigné S, Justy F, Njiokou F, Dufour S, Danquah E, Alahakoon J, Verheyen E, Stanley WT, O’Brien SJ, Johnson WE, Luo S-J (2018) The complete phylogeny of pangolins: Scaling up resources for the molecular tracing of the most trafficked mammals on earth. J Hered 109(4):347-359 https://doi.org/10.1093/jhered/esx097

    Article  CAS  PubMed  Google Scholar 

  • Giannini NP, Morales MM, Wilson LAB, Velazco PM, Abdala F, Flores DA (2021) The cranial morphospace of extant marsupials. J Mamm Evol 28(4):1145-1160 https://doi.org/10.1007/s10914-021-09589-y

    Article  Google Scholar 

  • Guillerme T (2018) dispRity: A modular R package for measuring disparity. Methods Ecol Evol 9(7):1755-1763 https://doi.org/10.1111/2041-210X.13022

    Article  Google Scholar 

  • Hanot P, Herrel A, Guintard C, Cornette R (2017) Morphological integration in the appendicular skeleton of two domestic taxa: the horse and donkey. Proc R Soc B 284(1864):20171241 https://doi.org/10.1098/rspb.2017.1241

    Article  Google Scholar 

  • Hayssen V (2011) Tamandua tetradactyla (Pilosa: Myrmecophagidae). Mamm Species 43(875):64-74 https://doi.org/10.1644/875.1

    Article  Google Scholar 

  • Heath ME (1992a) Manis pentadactyla. Mamm Species (414):1-6 https://doi.org/10.2307/3504143

    Article  Google Scholar 

  • Heath ME (1992b) Manis temminckii. Mamm Species (415):1-5 https://doi.org/10.2307/3504220

    Article  Google Scholar 

  • Hedberg CP, Lyons SK, Smith FA (2022) The hidden legacy of megafaunal extinction: Loss of functional diversity and resilience over the Late Quaternary at Hall’s Cave. Global Ecol Biogeogr 31(2):294-307 https://doi.org/10.1111/geb.13428

    Article  Google Scholar 

  • Hedrick BP, Dickson BV, Dumont ER, Pierce SE (2020) The evolutionary diversity of locomotor innovation in rodents is not linked to proximal limb morphology. Sci Rep 10(717):1-11 https://doi.org/10.1038/s41598-019-57144-w

    Article  CAS  Google Scholar 

  • Hildebrand M (1985) Digging of quadrupeds. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. Harvard University Press, Cambridge, pp 89–109

    Chapter  Google Scholar 

  • Janis CM, Buttrill K, Figueirido B (2014) Locomotion in extinct giant kangaroos: Were sthenurines hop-less monsters? PLoS ONE 9(10):e109888-e109888 https://doi.org/10.1371/journal.pone.0109888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janis CM, Martín-Serra A (2020) Postcranial elements of small mammals as indicators of locomotion and habitat. PeerJ 8:e9634 https://doi.org/10.7717/peerj.9634

    Article  PubMed  PubMed Central  Google Scholar 

  • Janis CM, Napoli JG, Billingham C, Martín-Serra A (2020) Proximal humerus morphology indicates divergent patterns of locomotion in extinct giant kangaroos. J Mamm Evol 27:627-647 https://doi.org/10.1007/s10914-019-09494-5

    Article  Google Scholar 

  • Johnson CN, Prideaux GJ (2004) Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: No evidence for environmental change as cause of extinction. Austral Ecol 29(5):553-557 https://doi.org/10.1111/j.1442-9993.2004.01389.x

    Article  Google Scholar 

  • Jones B, Martín-Serra A, Rayfield EJ, Janis CM (2022) Distal humeral morphology indicates locomotory divergence in extinct giant kangaroos. J Mamm Evol 29:27-41 https://doi.org/10.1007/s10914-021-09576-3

    Article  Google Scholar 

  • Kley N, Kearney M (2007) Adaptations for digging and burrowing. In: Hall BK (ed) Fins Into Limbs: Evolution, Development and Transformation. University of Chicago Press, Chicago and London, pp 284-309

  • Klingenberg CP (2014) Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos Trans R Soc Lond, Ser B: Biol Sci 369(1649):20130249-20130249 https://doi.org/10.1098/rstb.2013.0249

    Article  Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34(7):1812-1819

    Article  CAS  PubMed  Google Scholar 

  • López-Aguirre C, Hand SJ, Koyabu D, Tu VT, Wilson LAB (2021) Phylogeny and foraging behaviour shape modular morphological variation in bat humeri. J Anat 238(6):1312-1329 https://doi.org/10.1111/joa.13380

    Article  PubMed  Google Scholar 

  • Lungmus JK, Angielczyk KD (2019) Antiquity of forelimb ecomorphological diversity in the mammalian stem lineage (Synapsida). Proc Nat Acad Sci U S A 116(14):6903-6907 https://doi.org/10.1073/pnas.1802543116

    Article  CAS  Google Scholar 

  • Lungmus JK, Angielczyk KD (2021) Phylogeny, function and ecology in the deep evolutionary history of the mammalian forelimb. Proc R Soc B 288(1949):20210494 https://doi.org/10.1098/rspb.2021.0494

    Article  Google Scholar 

  • Mackness BS (2008) Reconstructing Palorchestes (Marsupialia: Palorchestidae) - from giant kangaroo to marsupial 'tapir'. Proc Linn Soc N S W 130:21-36

    Google Scholar 

  • MacLaren JA, Nauwelaerts S (2016) A three‐dimensional morphometric analysis of upper forelimb morphology in the enigmatic tapir (Perissodactyla: Tapirus) hints at subtle variations in locomotor ecology. J Morphol 277(11):1469-1485

    Article  PubMed  Google Scholar 

  • Mallet C, Billet G, Houssaye A, Cornette R (2020) A first glimpse at the influence of body mass in the morphological integration of the limb long bones: an investigation in modern rhinoceroses. J Anat 237(4):704-726 https://doi.org/10.1111/joa.13232

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín-Serra A, Figueirido B, Palmqvist P (2014) A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PLoS ONE 9(1):e85574 https://doi.org/10.1371/journal.pone.0085574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Serra A, Figueirido B, Palmqvist P (2016) In the pursuit of the predatory behavior of borophagines (Mammalia, Carnivora, Canidae): Inferences from forelimb morphology. J Mamm Evol 23(3):237-249 https://doi.org/10.1007/s10914-016-9321-5

    Article  Google Scholar 

  • Martín‐Serra A, Figueirido B, Pérez‐Claros JA, Palmqvist P (2015) Patterns of morphological integration in the appendicular skeleton of mammalian carnivores. Evolution 69(2):321-340

    Article  PubMed  Google Scholar 

  • Meloro C, de Oliveira AM (2019) Elbow joint geometry in bears (Ursidae, Carnivora): A tool to infer paleobiology and functional adaptations of Quaternary fossils. J Mamm Evol 26:133-146 https://doi.org/10.1007/s10914-017-9413-x

    Article  Google Scholar 

  • Miljutin A (2009) Substrate utilization and feeding strategies of mammals: description and classification. Estonian J Ecol 58(1):60-71

    Article  Google Scholar 

  • Milne N, Vizcaíno S, Fernicola J (2009) A 3D geometric morphometric analysis of digging ability in the extant and fossil cingulate humerus. J Zool 278(1):48-56

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36(2):235-247 https://doi.org/10.1007/s11692-009-9055-x

    Article  Google Scholar 

  • Montanari S, Louys J, Price GJ (2013) Pliocene paleoenvironments of southeastern Queensland, Australia inferred from stable isotopes of marsupial tooth enamel. PLoS ONE 8(6):e66221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz NA, Cassini GH, Candela AM, Vizcaíno SF (2017) Ulnar articular surface 3-D landmarks and ecomorphology of small mammals: a case study of two early Miocene typotheres (Notoungulata) from Patagonia. Earth Environ Sci Trans R Soc Edinb 106(4):315-323

    Google Scholar 

  • Owen R (1869) On the fossil mammals of Australia. Part III. Diprotodon australis, Owen. Philos Trans R Soc Lond, Ser B: Biol Sci 160:519-578

    Google Scholar 

  • Owen R (1874) On the fossil mammals of Australia. Part 9. Family Macropodidæ; Genera Macropus, Pachysiagon, Leptosiagon, Procoptodon, and Palorchestes. Proc R Soc Lond, Ser B: Biol Sci 164:783-803

    Google Scholar 

  • Piper KJ (2006) A new species of Palorchestidae (Marsupialia) from the Pliocene and early Pleistocene of Victoria. Alcheringa 30:281-294 https://doi.org/10.1080/03115510609506867

    Article  Google Scholar 

  • Polly PD (2007) Limbs in mammalian evolution. In: Hall BK (ed) Fins into Limbs. University of Chicago Press, Chicago and London, pp 245-268

  • R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria

  • Richards HL, Bishop PJ, Hocking DP, Adams JW, Evans AR (2021) Low elbow mobility indicates unique forelimb posture and function in a giant extinct marsupial. J Anat 238:1425-1441

    Article  PubMed  Google Scholar 

  • Richards HL, Wells RT, Evans AR, Fitzgerald EM, Adams JW (2019) The extraordinary osteology and functional morphology of the limbs in Palorchestidae, a family of strange extinct marsupial giants. PLoS ONE 14(9):e0221824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RG, Flannery TF, Ayliffe LK, Yoshida H, Olley JM, Prideaux GJ, Laslett GM, Baynes A, Smith MA, Jones R (2001) New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science 292(5523):1888-1892

    Article  CAS  PubMed  Google Scholar 

  • Samuels JX, Van Valkenburgh B (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269(11):1387-1411

    Article  PubMed  Google Scholar 

  • Schlager S (2017) Morpho and Rvcg – Shape Analysis in R. In Zheng G, Li S, Szekely G (eds.), Statistical Shape and Deformation Analysis, 217–256. Academic Press. ISBN 9780128104934

  • Schmidt M, Fischer MS (2009) Morphological integration in mammalian limb proportions: dissociation between function and development. Evolution 63(3):749-766

    Article  PubMed  Google Scholar 

  • Scott HH (1915) A monograph of Nototherium tasmanicum (genus-Owen: sp. nov.) Tasman Dep Mines Geol Surv Rec 4:47

  • Serio C, Raia P, Meloro C (2020) Locomotory adaptations in 3D humerus geometry of Xenarthra: Testing for convergence. Front Ecol Evol 8(139):1-12 https://doi.org/10.3389/fevo.2020.00139

    Article  Google Scholar 

  • Tarquini J (2021) Femoral shape in procyonids (Carnivora, Procyonidae): Morphofunctional implications, size and phylogenetic signal. J Mamm Evol 28:159-171 https://doi.org/10.1007/s10914-019-09491-8

    Article  Google Scholar 

  • The Mesquite Project Team (2021) Mesquite: a modular system for evolutionary analysis. 3.70 edn. The Mesquite Project Team. http://www.mesquiteproject.org. Accessed 19 Jan 2022

  • Toledo N, Muñoz NA, Cassini GH (2021) Ulna of extant xenarthrans: Shape, size, and function. J Mamm Evol 28:35-45 https://doi.org/10.1007/s10914-020-09503-y

    Article  Google Scholar 

  • Trusler PW, Sharp AC (2016) Description of new cranial material of Propalorchestes (Marsupialia: Palorchestidae) from the middle Miocene Camfield Beds, Northern Territory, Australia. Mem Mus Vic 74:291-324

    Article  Google Scholar 

  • Villmoare B, Fish J, Jungers W (2011) Selection, morphological integration, and strepsirrhine locomotor adaptations. Evol Biol 38(1):88-99 https://doi.org/10.1007/s11692-011-9108-9

    Article  Google Scholar 

  • Vizcaíno SF, Toledo N, Bargo MS (2018) Advantages and limitations in the use of extant xenarthrans (Mammalia) as morphological models for paleobiological reconstruction. J Mamm Evol 25(4):496-505 https://doi.org/10.1007/s10914-017-9400-2

    Article  Google Scholar 

  • Wainwright PC (2007) Functional versus morphological diversity in macroevolution. Annu Rev Ecol Evol Syst 38(1):381-401 https://doi.org/10.1146/annurev.ecolsys.38.091206.095706

    Article  Google Scholar 

  • Wang Y, Cerling TE (1994) A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 107(3):281-289

    Article  Google Scholar 

  • Wilson LAB, Balcarcel A, Geiger M, Heck L, Sánchez-Villagra MR (2021) Modularity patterns in mammalian domestication: Assessing developmental hypotheses for diversification. Evol Lett 5(4):385-396 https://doi.org/10.1002/evl3.231

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodburne MO (1967) Alcoota Fauna, Central Australia. An integrated palaeontological and geological study. Bull Bur Min Res Geo Geophy Aust 87:1-178

    Google Scholar 

  • Woods JT (1958) The extinct marsupial genus Palorchestes Owen. Mem Qld Mus 13(4):177-193

    Google Scholar 

  • Young NM, Hallgrímsson B (2005) Serial homology and the evolution of mammalian limb covariation structure. Evolution 59(12):2691-2704 https://doi.org/10.1111/j.0014-3820.2005.tb00980.x

    Article  PubMed  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric Morphometrics For Biologists: A Primer. Academic Press, New York and London

Download references

Acknowledgements

For access to museum collections, we thank: Sandy Ingleby & Matt McCurry (Australian Museum); Marisa Suvoy, Sara Ketelsen & Eleanor Hoeger (American Museum of Natural History); Adam Yates (Museum and Art Gallery of the Northern Territory); Tim Ziegler, Katie Date, Karen Roberts & Ricky-Lee Erickson (Museums Victoria); Tammy Gordon (Queen Victoria Museum and Art Gallery); Mary-Anne Binnie (South Australian Museum); Rolan Eberhard & Nikki King-Smith (Tasmanian Museum and Art Gallery). We are grateful to Stephanie Pierce and Peter Bishop (Harvard University) for access to Didelphis meshes, Jacob Van Zoelen and Gavin Prideaux for sharing meshes of Kolopsis and Plaisiodon from the MAGNT collection, and to Alex McDonald for CT scanning several extant marsupials used in this study. CT scanning was performed with the valuable assistance of Dr Michael de Veer at Monash Biomedical Imaging. The authors acknowledge the facilities and scientific and technical assistance of the National Imaging Facility (NIF), a National Collaborative Research Infrastructure Strategy (NCRIS) capability at Monash Biomedical Imaging (MBI), a Technology Research Platform at Monash University. Additional meshes were sourced from online databases (Morphosource.org, Sketchfab.com, Digital Morphology Museum KUPRI), detailed in Online Resource 1. HLR thanks Kathleen Garland, Tahlia Pollock and James Rule for their generous advice on data analysis and phylogenetic comparative methods, Laura Wilson for methods assistance and comments on as earlier draft. We are also grateful to Nestor Toledo and an anonymous reviewer for their input that greatly improved this paper.

Funding

This research was supported by an Australian Government Research Training Program Scholarship and Monash University-Museums Victoria PhD Research Scholarship (HLR), internal funds from the Department of Anatomy and Developmental Biology, Monash University (JWA), and the Australian Research Council DP180101797 (ARE).

Author information

Authors and Affiliations

Authors

Contributions

HLR led the study, gathered and processed data, performed analyses, constructed figures and drafted the manuscript. HLR, DSR and ARE wrote code and interpreted results. JWA and ARE provided supervision. All authors contributed to and approved the final manuscript text.

Corresponding author

Correspondence to Hazel L. Richards.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, H.L., Rovinsky, D.S., Adams, J.W. et al. Inferring the palaeobiology of palorchestid marsupials through analysis of mammalian humeral and femoral shape. J Mammal Evol 30, 47–66 (2023). https://doi.org/10.1007/s10914-022-09640-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-022-09640-6

Keywords

Navigation