Skip to main content

Advertisement

Log in

Mammary Stroma in Development and Carcinogenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary glands of adult human females are secretory organs comprised of interdependent epithelial and mesenchymal cells. These cells constitute an assemblage of collecting ducts that end in terminal duct lobular units with hollow alveolar ductules that can differentiate to produce and expel milk. Systemic and maternal hormones, autocrine and paracrine growth factors, and cytokines regulate virtually all phases of mammary gland development. During organogenesis, epithelial and mesenchymal cells interact to form precursors of the parenchyma and stroma in the mature gland. Organogenesis precedes five stages of postnatal development: puberty, pregnancy, lactation, involution, and menopause. Each stage requires a specific set of morphogenetic changes in glandular structure and function. Cycles of cell proliferation, differentiation, and involution may recur until menopause. In addition, physiological responses such as inflammation and pathological events such as tumorigenesis are remarkable for their similarities to embryonic morphogenesis. Here we take a succinct look at the ever-improving understanding of stroma–epithelial interactions and mesenchyme function in mammary gland biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMP4:

Bone morphogenetic protein 4

DMM:

Dense mammary mesenchyme

E:

Embryonic day

FGF10:

Fibroblast growth factor 10 protein

Fgf10:

Fibroblast growth factor 10 gene

FP:

Fat pad precursor

Gli3:

Glioma-associated zinc finger 3 transcription factor

ME:

Mammary epithelium

Nu/Nu:

Immunodeficient athymic Foxn1nu mouse

PTHrP:

Parathyroid hormone-related peptide

SCID:

Severe combined immunodeficiency

References

  1. Spemann H, Mangold H. Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol. 2001;45:13–38.

    PubMed  CAS  Google Scholar 

  2. Grobstein C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 1953;172:869–71.

    Article  PubMed  CAS  Google Scholar 

  3. Grobstein C. Mechanisms of organogenetic tissue interaction. Natl Cancer Inst Monogr. 1967;26:279–99.

    PubMed  CAS  Google Scholar 

  4. Freischmajer R, Billingham R, editors. Epithelial–mesenchymal interactions; 18th Hahnemann symposium. Baltimore: Williams & Wilkins; 1968. 326 pp.

    Google Scholar 

  5. Wessells NK, Cohen JH. Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects. Dev Biol. 1967;15:237–70.

    Article  Google Scholar 

  6. Saxen L. Failure to demonstrate tubule induction in a heterologous mesenchyme. Dev Biol. 1970;23:511–23.

    Article  PubMed  CAS  Google Scholar 

  7. Ekblom P. Basement membrane proteins and growth factors in kidney differentiation. In: Trestad RL, editor. Role of the extracellular matrix in development. New York: Liss; 1984. p. 173–206.

    Google Scholar 

  8. Fukamachi J, Mizuno T, Takayama S. Epithelial–mesenchymal interactions in differentiation of stomach epithelium in fetal mice. Anat Embryol. 1979;157:151–60.

    Article  PubMed  CAS  Google Scholar 

  9. Simon-Assmann P, Bouziges F, Arnold C, Haffen K, Kedinger M. Epithelial–mesenchymal interactions in the production of basement membrane components in the gut. Development. 1988;102:339–47.

    PubMed  CAS  Google Scholar 

  10. Cunha GR, Chung LWK, Shannon JM, Reese BA. Stromal–epithelial interactions in sex differentiation. Biol Reprod. 1980;22:19–42.

    Article  PubMed  CAS  Google Scholar 

  11. Slavkin HC, Zeichner-David M, Siddigui MAQ. Molecular aspects of tooth morphogenesis and differentiation. Mol Asp Med. 1981;4:125–88.

    Article  Google Scholar 

  12. Sakakura T, Nishizuka Y, Dawe CJ. Mesenchyme-dependent morphogeneseis and epithelium-specific cytodifferentiation in mouse mammary gland. Science. 1976;194:1439–41.

    Article  PubMed  CAS  Google Scholar 

  13. Turner CW, Gomez ET. The normal development of the mammary gland of the male and female albino mouse. I. Intrauterine. Mo Agric Exp Station Res Bull. 1933;182:3–20.

    Google Scholar 

  14. Myers JA. Studies on the mammary gland. II. The fetal development of the mammary gland in the female albino rat. Am J Anat. 1917;22:195–223.

    Article  Google Scholar 

  15. Raynaud A. Morphogenesis of the mammary gland. In: Kon SK, Cowie AT, editors. Milk: the mammary gland and its secretion, vol. 1. New York: Academic; 1961. p. 3–46.

    Google Scholar 

  16. Propper AY. Wandering epithelial cells in the rabbit embryo milk line. Dev Biol. 1978;67:225–31.

    Article  PubMed  CAS  Google Scholar 

  17. Balinsky B. On the prenatal growth of the mammary gland rudiment in the mouse. J Anat. 1950;84:227–35.

    PubMed  CAS  Google Scholar 

  18. Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation. 2003;71:1–17.

    Article  PubMed  CAS  Google Scholar 

  19. Sakakura T. Mammary embryogenesis. In: Neville MC, Daniel CW, editors. The mammary gland. New York: Plenum Pub Corp; 1987. p. 37–66.

    Google Scholar 

  20. Kratochwil K. Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev Biol. 1969;20:46–71.

    Article  PubMed  CAS  Google Scholar 

  21. Propper A, Gomot L. Tissue interactions during organogenesis of the mammary gland in the rabbit embryo. C R Acad Sci Hebd Seances Acad Sci D. 1967;264:2573–5.

    PubMed  CAS  Google Scholar 

  22. Dhouailly D, Rogers GE, Sengel P. The specification of feather and scale protein synthesis in epidermal–dermal recombinations. Dev Biol. 1978;96:1662–70.

    Google Scholar 

  23. Koller EJ, Fisher C. Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science. 1980;207:993–5.

    Article  Google Scholar 

  24. Neubauer BL, Chung LWK, McCormick KA, Taguchi O, Thomposn TC, Cunha GR. Epithelial–mesenchymal interactions in prostate development. II. Biochemical observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J Cell Biol. 1983;96:1761–7.

    Article  Google Scholar 

  25. Kusakabe M, Sakakura T, Sano M, Nishizuka Y. A pituitary-salivary mixed gland induced by tissue recombination of embryonic pituitary epithelium and embryonic submandibular gland mesenchyme. Dev Biol. 1985;110:382–91.

    Article  PubMed  CAS  Google Scholar 

  26. Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002;129:53–60.

    PubMed  CAS  Google Scholar 

  27. Veltmaat JM, Relaix F, Le LT, Kratochwil K, Sala FG, van Veelen W, et al. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development. 2006;13:2325–35.

    Article  Google Scholar 

  28. Sakakura T, Sakagami Y, Nishizuka Y. Dual origin of mesenchymal tissues participating in mouse mammary gland embryogenesis. Dev Biol. 1982;91:202–7.

    Article  PubMed  CAS  Google Scholar 

  29. Inaguma Y, Kusakabe M, Mackie EJ, Pearson CA, Chiquet-Ehrismann R, Sakakura T. Epithelial induction of stromal tenascin in the mouse mammary gland: from embryogenesis to carcinogenesis. Dev Biol. 1988;128:245–55.

    Article  PubMed  CAS  Google Scholar 

  30. Chiquet-Ehrismann R, Mackie EJ, Pearson CA, Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 1986;47:131–9.

    Article  PubMed  CAS  Google Scholar 

  31. Kimata K, Sakakura T, Inaguma Y, Kato M, Nishizuka Y. Participation of two different mesenchymes in the developing mouse mammary gland: synthesis of basement membrane components by fat pad precursor cells. J Embryol Exp Morpholog. 1985;89:243–57.

    CAS  Google Scholar 

  32. Kratochwil K, Schwartz P. Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. Proc Natl Acad Sci U S A. 1976;73:4041–4.

    Article  PubMed  CAS  Google Scholar 

  33. Foley J, Dann P, Hong J, Cosgrove J, Dreyer B, Rimm D, et al. Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development. 2001;128:513–25.

    PubMed  CAS  Google Scholar 

  34. Hens JR, Dann P, Zhang JP, Harris S, Robinson GW, Wysolmerski J. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development. 2007;134:1221–30.

    Article  PubMed  CAS  Google Scholar 

  35. Mayer JA, Foley J, De La Cruz D, Chuong CM, Widelitz R. Conversion of the nipple to hair-bearing epithelia by lowering bone morphogenetic protein pathway activity at the dermal–epidermal interface. Am J Pathol. 2008;173:1339–48.

    Article  PubMed  CAS  Google Scholar 

  36. Sakakura T, Nishizuka Y, Dawe CD. Capacity of mammary fat pads of adult C3H/HeMs mice to interact morphogenetically with fetal mammary epithelium. J Natl Cancer Inst. 1979;63:733–6.

    PubMed  CAS  Google Scholar 

  37. Williams MF, Hoshino K. Early histogenesis of transplanted mouse mammary glands. I. Within 21 days following isografting. Z Anat Entwicklungsgesch. 1970;132:305–17.

    Article  PubMed  CAS  Google Scholar 

  38. Hoshino K. Transplantability of mammary gland in brown fat pads of mice. Nature. 1967;213:194–5.

    Article  PubMed  CAS  Google Scholar 

  39. Miller FR, Medina D, Heppner GH. Preferential growth of mammary tumors in intact mammary fat pads. Cancer Res. 1981;41:3863–7.

    PubMed  CAS  Google Scholar 

  40. Outzen HC, Leiter EH. Transplantation of pancreatic islets into cleared mammary fat pads. Transplantation. 1981;32:101–5.

    Article  PubMed  CAS  Google Scholar 

  41. Sakakura T, Kusano I, Kusakabe M, Inaguma Y, Nishizuka Y. Biology of mammary fat pad in fetal mouse: capacity to support development of various fetal epithelia in vivo. Development. 1987;100:421–30.

    PubMed  CAS  Google Scholar 

  42. Hynes NE, Watson CJ. Mammary gland growth factors: roles in normal development and in cancer. Cold Spring Harb Perspect Biol. 2010;2:a003186. doi:10.1101/cshperspect.a003186.

    Article  PubMed  Google Scholar 

  43. Taylor RA, Wang H, Wilkinson SE, Richards MG, Britt KL, Vaillant F, et al. Lineage enforcement by inductive mesenchyme on adult epithelial stem cells across developmental germ layers. Stem Cells. 2009;27:3032–42.

    PubMed  CAS  Google Scholar 

  44. Booth BW, Mack DL, Androutsellis-Theotokis A, McKay RD, Boulanger CA, Smith GH. The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci U S A. 2008;105:14891–6.

    Article  PubMed  CAS  Google Scholar 

  45. Sakakura T, Sakagami Y, Nishizuka Y. Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev Biol. 1979;72:201–19.

    Article  PubMed  CAS  Google Scholar 

  46. Sakagami Y, Inaguma Y, Sakakura T, Nishizuka Y. Intestine-like remodelling of adult mouse glandular stomach by implanting of fetal intestine mesenchyme. Cancer Res. 1984;44:5845–9.

    PubMed  CAS  Google Scholar 

  47. Cunha GR, Lung B, Reese B. Glandular epithelial induction by embryonic mesenchyme in adult bladder epithelium of BALB/c mice. Invest Urol. 1980;17:302–4.

    PubMed  CAS  Google Scholar 

  48. Cunha GR. Stromal induction and specification of morphogenesis and cytodifferentiation of the epithelia of the Mullerian ducts and urogenital sinus during development of the uterus and vagina in mice. J Exp Zool. 1976;198:361–70.

    Article  Google Scholar 

  49. Sakakura T, Sakagami Y, Nishizuka Y. Accelerated mammary cancer development by fetal salivary mesenchyme isografted to adult mouse mammary epithelium. J Natl Cancer Inst. 1981;66:953–9.

    PubMed  CAS  Google Scholar 

  50. Schor SL, Schor AM, Rushton G, Smith L. Adult foetal and transformed fibroblasts display different migratory phenotypes on collagen gels: evidence for an isoformic transition during foetal development. J Cell Sci. 1985;73:221–34.

    PubMed  CAS  Google Scholar 

  51. Schor SL, Haggie JA, Durning P, Howell A, Smith L, Sellwood RAS, et al. Occurrence of a fetal fibroblast phenotype in familial breast cancer. Int J Cancer. 1986;37:831–6.

    Article  PubMed  CAS  Google Scholar 

  52. Redler P, Lustig E. Differences in growth promoting effect of normal and pretumoral dermis on epidermis in vitro. Dev Biol. 1968;17:679–91.

    Article  PubMed  CAS  Google Scholar 

  53. Howard B, Ashworth A. Signalling pathways implicated in early mammary gland morphogenesis and breast cancer. PLoS Genet. 2006. doi:10.1371/journal.pgen.0020112.

    Google Scholar 

  54. Wansbury O, Mackay A, Kogata N, Mitsopoulos C, Kendrick H, Davidson K, et al. Transcriptome analysis of embryonic mammary cells reveals insights into mammary lineage establishment. Breast Cancer Res. 2011. doi:10.1186/bcr2928.

    PubMed  Google Scholar 

  55. Tucker RP, Chiquet-Ehrismann R. The regulation of tenascin expression by tissue microenvironments. Biochim Biophys Acta. 2009;1793:888–92.

    Article  PubMed  CAS  Google Scholar 

  56. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009;15:774–80.

    Article  PubMed  CAS  Google Scholar 

  57. Orr JW. The role of stroma in epidermal carcinogenesis. Natl Cancer Inst Monogr. 1963;10:531–7.

    Article  Google Scholar 

  58. Steinmüller D. A reinvestigation of epidermal transplantation during chemical carcinogenesis. Cancer Res. 1971;31:2080–4.

    PubMed  Google Scholar 

  59. Hodges GM, Hicks RM, Spacey GD. Epithelial–stromal interactions in normal and chemical carcinogen-treated adult bladder. Cancer Res. 1977;37:3720–30.

    PubMed  CAS  Google Scholar 

  60. Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C. The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci. 2004;117:1495–502.

    Article  PubMed  CAS  Google Scholar 

  61. Dawe CJ, Morgan WD, Williams JE, Summerour JP. Inductive epithelio–mesenchymal interaction: is it involved in the development of epithelial neoplasms? In: Müller-Berat N, Rosenfeld C, Tarin D, Viza D, editors. Progress in differentiation research. Amsterdam: North-Holland; 1976. p. 305.

    Google Scholar 

  62. Azzarone B, Mareel M, Billard C, Scemama P, Chaponnjer C, Macieira-Coelho A. Abnormal properties of skin fibroblasts from patients with breast cancer. Int J Cancer. 1984;33:759–64.

    Article  PubMed  CAS  Google Scholar 

  63. DeCosse JJ, Gossens CL, Kuzma JF, Unworth BR. Breast cancer: induction of differentiation by embryonic tissue. Science. 1973;181:1057–8.

    Article  PubMed  CAS  Google Scholar 

  64. Cooper M, Pinkus H. Intrauterine transplantation of rat basal cell carcinoma as a model for reconversion of malignant to benign growth. Cancer Res. 1977;37:2544–52.

    PubMed  CAS  Google Scholar 

  65. MacKenzie IC, Babelsteen E, Roed-Petersen B. A method for studying epithelial–mesenchymal interactions in human oral mucosal lesions. Scand J Dent Res. 1979;87:234–43.

    PubMed  CAS  Google Scholar 

  66. DeCosse JJ, Gossens CL, Kuzma JF, Unworth BR. Embryonic inductive tissues that cause histologic differentiation of murine mammary carcinoma in vitro. J Natl Cancer Inst. 1975;54:913–22.

    PubMed  CAS  Google Scholar 

  67. Bussard KM, Smith GH. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo. PLoS One. 2012. doi:10.1371/journal.pone.0049221.

    PubMed  Google Scholar 

  68. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One. 2009. doi:10.1371/journal.pone.0007965.

    Google Scholar 

  69. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122:4243–56.

    Article  PubMed  CAS  Google Scholar 

  70. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406.

    Article  PubMed  CAS  Google Scholar 

  71. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18:884–901.

    Article  PubMed  CAS  Google Scholar 

  72. Soto AM, Sonnenschein C. The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. BioEssays. 2011;33:332–40.

    Article  PubMed  Google Scholar 

  73. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.

    Article  PubMed  CAS  Google Scholar 

  74. Vaux DL. In defense of the somatic mutation theory of cancer. BioEssays. 2011;33:341–3.

    Article  PubMed  Google Scholar 

  75. Cowin P, Wysolmerski J. Molecular mechanisms guiding mammary gland development. Cold Spring Harb Perspect Biol. 2010. doi:10.1101/cshperspect.a003251.

    PubMed  Google Scholar 

  76. Gjorevski N, Nelson CM. Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol. 2011;12:581–93.

    Article  PubMed  CAS  Google Scholar 

  77. Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial–mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010;15:169–90.

    Article  PubMed  Google Scholar 

  78. Wang Y, Shang Y. Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis. Exp Cell Res. 2013;319:160–9.

    Article  PubMed  CAS  Google Scholar 

  79. Chakrabarti R, Hwang J, Andres Blanco M, Wei Y, Lukačišin M, Romano RA, et al. Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol. 2012;14:1212–22.

    Article  PubMed  CAS  Google Scholar 

  80. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  81. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Shiurba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakakura, T., Suzuki, Y. & Shiurba, R. Mammary Stroma in Development and Carcinogenesis. J Mammary Gland Biol Neoplasia 18, 189–197 (2013). https://doi.org/10.1007/s10911-013-9281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-013-9281-9

Keywords

Navigation