Skip to main content

Mammary Stem Cells: How Much Do We Know?

  • Chapter
  • First Online:
Stem Cells in Veterinary Science
  • 367 Accesses

Abstract

Mammary stem cells are fundamental to the process of glandular development and homeostasis. Understanding the mammary gland biology is essential to delineate the processes that, in sync with the female’s systemic hormones, maintain the supply of stem cells with multilineage differentiation potential. Like hematopoietic stem cells, the mammary stem cells also differentiate hierarchically through asymmetrical divisions and give rise to a daughter stem cell and a progenitor cell with lineage-restricted differentiation capabilities. Identification of such stem cells and the key signaling events that may initiate malignant transformations or lead to the mammary tissue’s functional recovery will be the desired outcomes of the ongoing endeavors. These overwhelming possibilities assure that decoding the associated molecular factors/pathways that tightly regulate MaSCs activities will substantially add to our current understanding of breast oncogenesis, dairy animal productivity, and post-mastitis management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acland HM, Gillette DM (1982) Mammary carcinoma in a mare. Vet Pathol 19:93–95

    Article  CAS  Google Scholar 

  • Anderson E, Clarke RB, Howell A (1998) Estrogen responsiveness and control of normal human breast proliferation. J Mammary Gland Biol Neoplasia 3:23–35

    Article  CAS  Google Scholar 

  • Asselin-Labat ML, Shackleton M, Stingl J et al (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98:1011–1014

    Article  CAS  Google Scholar 

  • Belobrajdic DP, McIntosh GH (2000) Dietary butyrate inhibits NMU-induced mammary cancer in rats. Nutr Cancer 36:217–223

    Article  CAS  Google Scholar 

  • Berry SDK, Jobst PM, Ellis SE, Howard RD, Capuco AV, Akers RM (2003) Mammary epithelial proliferation and estrogen receptor alpha expression in prepubertal heifers: effects of ovariectomy and growth hormone. J Dairy Sci 86:2098–2105

    Article  CAS  Google Scholar 

  • Boutinaud M, Guinard-Flamenta J, Jammes H (2004) The number and activity of mammary epithelial cells, determining factors for milk production. Reprod Nutr Dev 44:499–508

    Article  Google Scholar 

  • Capuco AV, Choudhary RK (2020) Symposium review: determinants of milk production: understanding population dynamics in the bovine mammary epithelium. J Dairy Sci 103:1–13

    Article  Google Scholar 

  • Capuco AV, Wood DL, Baldwin R, McLeod K, Paape MJ (2001) Mammary cell number, proliferation, and apoptosis during a bovine lactation: relation to milk production and effect of bST. J Dairy Sci 84:2177–2187

    Article  CAS  Google Scholar 

  • Capuco AV, Ellis S, Wood DL, Akers RM, Garrett W (2002) Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment and expression of steroid receptors in prepubertal calves. Tissue Cell 34:9–20

    Article  Google Scholar 

  • Capuco AV, Choudhary RK, Daniels KM, Li RW, Evock-Clover CM (2012) Bovine mammary stem cells: cell biology meets production agriculture. Animal 6:382–393. https://doi.org/10.1017/S1751731111002369

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Weihua Z, Warner M, Gustafsson JA (2004) Estrogen receptors ER alpha and ER beta in proliferation in the rodent mammary gland. Proc Natl Acad Sci U S A 101:3739–3746

    Article  CAS  Google Scholar 

  • Chiedozi LC (1985) Breast cancer in Nigeria. Cancer 55:653–657

    Article  CAS  Google Scholar 

  • Choudhary RK, Capuco AV (2012) In vitro expansion of the mammary stem/ progenitor cell population by xanthosine treatment. BMC Cell Biol 13:14

    Article  CAS  Google Scholar 

  • Clarke RB, Anderson E, Howell A, Potten CS (2003) Regulation of human breast epithelial stem cells. Cell Prolif 36(Suppl1):45–58

    Article  CAS  Google Scholar 

  • DeOme KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515–520

    CAS  PubMed  Google Scholar 

  • Donegan WL (1979) Mammary carcinoma and pregnancy. Major Probl Clin Surg 5:448–463

    CAS  PubMed  Google Scholar 

  • Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl 1):59–72

    Article  CAS  Google Scholar 

  • Dontu G, El-Ashry D, Wicha MS (2004) Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 15:193–197

    Article  CAS  Google Scholar 

  • Foreman JH, Weidner JP, Parry BW, Hargis A (1990) Pleural effusion secondary to thoracic metastatic mammary adenocarcinoma in a mare. J Am Vet Med Assoc 197:1193–1195

    CAS  PubMed  Google Scholar 

  • Gaschott T, Maassen CU, Stein J (2001) Tributyrin, a butyrate precursor, impairs growth and induces apoptosis and differentiation in pancreatic cancer cells. Anticancer Res 21:2815–2819

    CAS  PubMed  Google Scholar 

  • Haslam SZ, Levely ML (1985) Estrogen responsiveness of normal mouse mammary cells in primary cell culture: association of mammary fibroblasts with estrogenic regulation of progesterone receptors. Endocrinology 116:1835–1844

    Article  CAS  Google Scholar 

  • Heerdt BG, Houston MA, Anthony GM, Augenlicht LH (1999) Initiation of growth arrest and apoptosis of MCF-7 mammary carcinoma cells by tributyrin, a triglyceride analogue of the short-chain fatty acid butyrate, is associated with mitochondrial activity. Cancer Res 59:1584–1591

    CAS  PubMed  Google Scholar 

  • Kato M, Higuchi T, Hata H, Ishikawa Y, Kadota K (1998) Lactalbumin-positive mammary carcinoma in a mare. Equine Vet J 30:358–360

    Article  CAS  Google Scholar 

  • Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930

    Article  CAS  Google Scholar 

  • Kuerer HM, Cunningham JD, Brower ST, Tartter PI (1997) Breast carcinoma associated with pregnancy and lactation. Surg Oncol 6:93–98

    Article  CAS  Google Scholar 

  • Kumar A, Parveen S, Sharma I, Pathak H, Deshmukh MV, Sharp JA, Kumar S (2019) Structural and Mechanistic insights into EchAMP: a antimicrobial protein from the Echidna milk. BBA-Biomembranes 1861(6):1260–1274

    Article  CAS  Google Scholar 

  • Li N, Zhang Y, Naylor MJ et al (2005) β1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO J 24:1942–1953

    Article  CAS  Google Scholar 

  • Neerukonda M, Pavuluri S, Sharma I, Kumar A, Sailasree SP, Jyothi Lakshmi B, Sharp JA, Kumar S (2019) Functional evaluation of a monotreme specific antimicrobial protein, EchAMP in transgenic mice against experimentally induced mastitis. Transgenic Res 28(5-6):573–587

    Article  CAS  Google Scholar 

  • Rudas P, Bartha T, Toth J, Frenyo VI (1994) Impaired local deiodination of thyroxine to triiodothyronine in dogs with symmetrical truncal alopecia. Vet Res Commun 18:175–182

    Article  CAS  Google Scholar 

  • Russo J, Ao X, Grill C, Russo IH (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227

    Article  CAS  Google Scholar 

  • Schams D, Kohlenberg S, Amselgruber W, Berisha B, Pfaffl MW, Sinowatz F (2003) Expression and localisation of oestrogen and progesterone receptors in the bovine mammary gland during development, function and involution. J Endocrinol 177:305–317

    Article  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  CAS  Google Scholar 

  • Shyamala G (1997) Roles of estrogen and progesterone in normal mammary gland development - Insights from progesterone receptor null mutant mice and in situ localization of receptor. Trends Endocrinol Metab 8:34–39

    Article  CAS  Google Scholar 

  • Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8:R7

    Article  Google Scholar 

  • Smith GH (1996) Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 39:21–31

    Article  CAS  Google Scholar 

  • Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132:681–687

    Article  CAS  Google Scholar 

  • Smith GH, Medina D (1988) A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci 90:173–183

    Article  Google Scholar 

  • Spitzer AJ, Tian Q, Choudhary RK, Zhao FQ (2020) Bacterial endotoxin induces oxidative stress and reduces milk protein expression and hypoxia in the mouse mammary gland. Oxidative Med Cell Longev 2020:1–16

    Article  Google Scholar 

  • Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    Article  CAS  Google Scholar 

  • Visvader JE, Lindeman GJ (2006) Mammary stem cells and mammopoiesis. Cancer Res 66:9798–9801. https://doi.org/10.1158/0008-5472.CAN-06-2254

    Article  CAS  PubMed  Google Scholar 

  • Zeps N, Dawkins HJ, Papadimitriou JM, Redmond SL, Walters MI (1996) Detection of a population of long-lived cells in mammary epithelium of the mouse. Cell Tissue Res 286:525–536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge T. Avinash Raj at CSIR-CCMB for sectioning and H&E staining of the mouse mammary gland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Kumar, S. (2021). Mammary Stem Cells: How Much Do We Know?. In: Choudhary, R.K., Choudhary, S. (eds) Stem Cells in Veterinary Science. Springer, Singapore. https://doi.org/10.1007/978-981-16-3464-2_3

Download citation

Publish with us

Policies and ethics