Skip to main content
Log in

Study of oxide-based nano cluster X3O4 (X = Ti, Fe and Zn) for biomedical applications: a CDFT approach

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In recent years, oxide-based nano clusters have shown some significant applications in medical sciences, bio sensing, catalysis, and energy storage. Here we have reported the computational study of oxide-based nano clusters X3O4 (X = Ti, Fe, Zn) by means of Conceptual Density Functional Theory (CDFT) method. Geometry optimization and frequency computation of these clusters are carried out using the functional B3LYP/LANL2DZ in the DFT framework. Highest Occupied Molecular Orbital (HOMO)–Lowest Unoccupied Molecular Orbital (LUMO) of the clusters are found between 2.019 and 3.570 eV. The global CDFT descriptors viz. hardness, softness, electronegativity, electrophiliicty index and dipole moment are calculated. Result shows that Zn3O4 has the maximum stability whereas Fe3O4 is highly reactive in nature. Electronegatiivty and electrophilicity index of these clusters decrease from Fe3O4 to Zn3O4 to Ti3O4. Analyses are conducted for the optical characteristics of X3O4 nano clusters, comprising their refractive index, dielectric constant, optical electronegativity and IR activity. Refractive index, dielectric constant and range of harmonic frequency increase from Zn3O4 to Fe3O4 via Ti3O4. The estimated bond length, HOMO–LUMO energy gap, refractive index and IR activity of the nano clusters are in agreement with the reported experimental and theoretical results. The physico-chemical properties of X3O4 nano clusters indicate their potential applications in biomedical sciences especialy for the treatment of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Zhou, M. Chen, Y. Zhuo, Y. Chai, W. Xu, R. Yuan, Anal. Chem. 89, 6787 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. L. Han, Y. Zhang, X. Lu, K. Wang, Z. Wang, H. Zhang, ACS Appl. Mater. Interfaces 8, 29088 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Kuang, K. Zhang, Y. Cao, X. Chen, K. Wang, M. Liu, R. Pei, ACS Appl. Mater. Interfaces 9, 12217 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. L. Liu, B. Li, Q. Wang, Z. Dong, H. Li, Q. Jin, H. Hong, J. Zhang, Y. Wang, Bioconj. Chem. 27, 2863 (2016)

    Article  CAS  Google Scholar 

  5. S. Wang, X. Zhao, S. Wang, J. Qian, S. He, ACS Appl. Mater. Interfaces 8, 24368 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. D. Chen, D. Yang, C.A. Dougherty, W. Lu, H. Wu, X. He, T. Cai, M.E. Van Dort, B.D. Ross, H. Hong, ACS Nano 11, 4315 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. Saha, S.C. Mohanta, K. Deka, P. Deb, P.S. Devi, ACS Appl. Mater. Interfaces 9, 4126 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. J.A. Kemp, M.S. Shim, C.Y. Heo, Y.J. Kwon, Adv. Drug Deliv. Rev. 98, 3 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. J.Y. Song, B.S. Kim, Bioprocess Biosyst. Eng. 32, 79 (2009)

    Article  PubMed  Google Scholar 

  10. W.H. Lia, X.P. Yuea, C.S. Guob, J.P. Lvb, S.S. Liub, Y. Zhangb, J. Xub, Appl. Surf. Sci. 335, 23 (2015)

    Article  ADS  Google Scholar 

  11. I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8), 1358 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. J. Cai, Y. Miao, B. Yu, P. Ma, L. Li, H. Fan, Langmuir 33, 1662 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. S. Schrittwieser, B. Pelaz, W.J. Parak, S. Lentijo-Mozo, K. Soulantica, J. Dieckhoff, F. Ludwing, A. Guenther, A. Tschöpe, J. Schotter, Sensors 16, 828 (2016)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. F. Lin, R. Doong, J. Phys. Chem. C 121, 7844 (2017)

    Article  CAS  Google Scholar 

  15. X. Han, H.K. Lee, W.C. Lim, Y.H. Lee, G.C. Phan-Quang, I.Y. Phang, X.Y. Ling, ACS Appl. Mater. Interfaces 8, 23941 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. J. Guo, I. Filpponen, L.S. Johansson, P. Mohammadi, M. Latikka, M.B. Linder, R.H.A. Ras, O.J. Rojas, Biomacromol 18, 898 (2017)

    Article  CAS  Google Scholar 

  17. Y. Zhang, Y. Tang, S. Gao, D. Jia, J. Ma, L. Liu, ACS Appl. Mater. Interfaces 9, 1453 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. S. He, T. Zeng, S. Wang, H. Niu, Y. Cai, ACS Appl. Mater. Interfaces 9, 2959 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. K. He, Y. Ma, B. Yang, C. Liang, X. Chen, C. Cai, Spectrochim. Acta A 173, 82 (2017)

    Article  ADS  CAS  Google Scholar 

  20. N. Shahabadi, A. Akbari, M. Jamshidbeigi, M. Falsafi, J. Mol. Liq. 224, 227 (2016)

    Article  CAS  Google Scholar 

  21. R. Xing, G. Liu, J. Zhu, Y. Hou, X. Chen, Pharm. Res. 31, 1377 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. A.A. Saei, A. Barzegari, M.H. Majd, D. Asgari, Y. Omidi, J. Nanopart. Res. 16, 1 (2014)

    Article  CAS  Google Scholar 

  23. M. Ma, F. Yan, M. Yao, Z. Wei, D. Zhou, H. Yao, H. Zheng, H. Chen, J. Shi, ACS Appl. Mater. Interfaces 8, 29986 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. I. Monaco, F. Arena, S. Biffi, E. Locatelli, B. Bortot, F. La Cava, G.M. Marini, G.M. Severini, E. Terreno, M. Comes Franchini, Bioconj. Chem. 28, 1382 (2017)

    Article  CAS  Google Scholar 

  25. R.Z. Seeni, X. Yu, H. Chang, P. Chen, L. Liu, C. Xu, ACS Appl. Mater. Interfaces 9, 20340 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. D.V. Voronin, O.A. Sindeeva, M.A. Kurochkin, O. Mayorova, I.V. Fedosov, O. Semyachkina-Glushkovskaya, D.A. Gorin, V.V. Tuchin, G.B. Sukhorukov, ACS Appl. Mater. Interfaces 9, 6885 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. Y.C. Yang, Y.T. Wang, W.L. Tseng, ACS Appl. Mater. Interfaces 9, 10069 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. D. Luong, S. Sau, P. Kesharwani, A.K. Iyer, Biomacromol 18, 1197 (2017)

    Article  CAS  Google Scholar 

  29. X. Nan, X. Zhang, Y. Liu, M. Zhou, X. Chen, X. Zhang, ACS Appl. Mater. Interfaces 9, 9986 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, ACS Appl. Mater. Interfaces 8, 6101 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, L. Tayebi, Anal. Biochem. 519, 19 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. Z. Li, M. Liu, L.K. Chen, G.Z. Li, Biomed. Environ. Sci. 30, 783 (2017)

    CAS  PubMed  Google Scholar 

  33. M. Eman Al-Zahrani, T. Soomro, R.M. Bashami, A.U. Rehman, E. Danish, I.M.I. Ismail, M. Aslam, A. Hameed, J. Environ. Chem. Eng. 4, 4330 (2016)

    Article  Google Scholar 

  34. N. Al-Qasmi, M. Tahir Soomro, M. Aslam, A. Ur Rehman, S. Ali, E.Y. Danish, I.M.I. Ismail, A. Hameed, J. Electrochemical Chem. 783, 112 (2016)

    CAS  Google Scholar 

  35. K. Liu, Y. Qin, Y. Muhammad, Y. Zhu, R. Tang, N. Chen, H. Shi, H. Zhang, Z. Tong, B. Yu, J. Alloys Compd. 781, 790 (2019)

    Article  CAS  Google Scholar 

  36. M.A. Majeed, W. Khan, M. Ahamed, A.N. Alhazaa, Mater. Sci. Semicond. Process. 99, 44 (2019)

    Article  Google Scholar 

  37. S. Rashdan, P. Kandesar, V. Jadhav, R. Komorek, R.M. Kishan, X.Y. Yu, Biomater. Sci. 5, 2212 (2017)

    Article  Google Scholar 

  38. A.K. Gupta, R.R. Naregalkar, V.D. Vaidya, M. Gupta, Nanomedicine 2, 23 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. F.Q. Hu, L. Wei, Z. Zhou, Y.L. Ran, Z. Li, M.Y. Gao, Adv. Mater. 18, 2553 (2006)

    Article  CAS  Google Scholar 

  40. L. Wang, K.G. Neoh, E.T. Kang, B. Shuter, S.C. Wang, Biomaterials 34, 4078 (2013)

    Article  Google Scholar 

  41. M.E. Sadat, M.K. Baghbador, A.W. Dunn, H.P. Wagner, R.C. Ewing, J. Zhang, H. Xu, G.M. Pauletti, D.B. Mast, D. Shi, Appl. Phys. Lett. 105, 091903 (2014)

    Article  ADS  Google Scholar 

  42. A. Radon, A. Drygala, L. Hawelek, D. Lukowiec, Mater Charact 131, 148 (2017)

    Article  CAS  Google Scholar 

  43. S. Brojabasi, T. Muthukumaran, J.M. Laskar, J. Philip, Opt. Commun. 336, 278 (2015)

    Article  ADS  CAS  Google Scholar 

  44. A. Sirivat, N. Paradee, Mater. Des. 181, 107942 (2019)

    Article  CAS  Google Scholar 

  45. A. Ibrahim, M.H. Abdel-Aziz, MSh. Zoromba, A.F. Al-Hossainy, Synth. Met. 238, 1 (2018)

    Article  CAS  Google Scholar 

  46. R. Pentcheva, W. Moritz, J. Rundgren, S. Frank, D. Schrupp, M. Scheffler, Surf. Sci. 602, 1299 (2008)

    Article  ADS  CAS  Google Scholar 

  47. S. Zarei, M. Nihad, H. Raanaei, J. Hazard. Mater. 344, 258 (2018)

    Article  CAS  PubMed  Google Scholar 

  48. M. Driess, K. Merz, S. Eur, J. Inorg. Chem. 2000, 2517 (2000)

    Google Scholar 

  49. K.D.D. Gunaratne, C. Berkdemir, C.L. Harmon, A.W. Castleman Jr., J. Phys. Chem. A 116, 12429 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. K. Merz, H.M. Hu, S. Rell, M. Driess, Eur. J. Inorg. Chem. 2003, 51 (2003)

    Article  Google Scholar 

  51. S. Suh, D.M. Hoffman, L.M. Atagi, D.C. Smith, Chem. Vap. Depos. 7(2), 81 (2001)

    Article  CAS  Google Scholar 

  52. K. Su, T.D. Tilley, M.J. Sailor, J. Am. Chem. Soc. 118(14), 3459 (1996)

    Article  CAS  Google Scholar 

  53. M. Lazell, M. Motevalli, S.A.A. Shah, A.C. Sullivan, J. Chem. Soc. Dalton Trans. 18, 3363 (1997)

    Article  Google Scholar 

  54. F.J. Feher, T.A. Budzichowski, Polyhedron 14, 3239 (1995)

    Article  CAS  Google Scholar 

  55. J.A. Biscardi, G.D. Meitzner, E. Iglesia, J. Catal. 179, 192 (1998)

    Article  CAS  Google Scholar 

  56. L. Rozes, N. Steunou, G. Fornasieri, C. Sanchez, Monatsh. Chem. 137, 501 (2006)

    Article  CAS  Google Scholar 

  57. K.S. Jeong, C. Chang, E. Sedlmayr, D. Sulzle, J. Phys. B 33, 3417 (2000)

    Article  ADS  CAS  Google Scholar 

  58. S. Das, P. Ranjan, K. Gaurav, P.K. Surolia, T. Chakraborty, Phys. B 646, 414305 (2022)

    Article  CAS  Google Scholar 

  59. S. Das, P. Ranjan, T. Chakraborty, Phys. Sci. Rev. (2023). https://doi.org/10.1515/psr-2022-0270

    Article  Google Scholar 

  60. S. Das, P. Ranjan, T. Chakraborty, Phys. Sci. Rev. (2022). https://doi.org/10.1515/psr-2021-0141

    Article  Google Scholar 

  61. P. Ranjan, S. Das, P. Yadav, H. Tandon, S. Chaudhary, B. Malik, A.K. Rajak, V. Suhag, T. Chakraborty, Theoret. Chem. Acc. 140(5), 1 (2021)

    Article  Google Scholar 

  62. S. Das, T. Chakraborty, P. Ranjan, Mater. Today: Proc. 54(3), 873 (2021)

    Google Scholar 

  63. J. Hafner, C. Wolverton, G. Ceder, MRS Bull. 31, 659 (2006)

    Article  Google Scholar 

  64. Gaussian 16, Revision C.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, (Gaussian, Inc., Wallingford CT, 2016)

  65. M. Anstrom, N.Y. Topsoe, J.A. Dumesic, J. Catal. 213, 115 (2003)

    Article  CAS  Google Scholar 

  66. P. Zhang, Y. Yang, X. Duan, Y. Liu, S. Wang, ACS Catal. 11, 11129 (2021)

    Article  CAS  Google Scholar 

  67. R. Tokarz-Sobieraj, K. Hermann, M. Witko, A. Blume, G. Mestl, R. Schogl, Surf. Sci. 489, 107 (2001)

    Article  ADS  CAS  Google Scholar 

  68. G. Pacchioni, J. Chem. Phys. 128, 182505 (2008)

    Article  ADS  PubMed  Google Scholar 

  69. Z.Y. Wang, T.L. Zhang, Q.H. Li, Q. Xue, R. Wang, Comput. Theoret. Chem. 1085, 75 (2016)

    Article  CAS  Google Scholar 

  70. A. Syaahiran, C.M. Lim, M.R.R. Kooh, A.H. Mahadi, Y.F.C. Chau, R. Thotagamuge, Mater. Today Commun. 28, 102508 (2021)

    Article  CAS  Google Scholar 

  71. C.I. Oprea, P. Panait, F. Cimpoesu, M. Ferbinteanu, M.A. Girtu, Materials 6, 2372 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. A. Umar, H.Y. Ammar, R. Kumar, A.A. Ibrahim, M.S. Al-Assiri, Sens. Actuators B 304, 127352 (2020)

    Article  CAS  Google Scholar 

  73. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford, 1989)

    Google Scholar 

  74. T.S. Moss, Proc. Phys. Soc. B 63(3), 167 (1950)

    Article  ADS  Google Scholar 

  75. T.S. Moss, Proc. Phys. Soc. A 64(6), 590 (1951)

    Article  ADS  Google Scholar 

  76. T.S. Moss, Phys. Status Solidi B 131(2), 415 (1985)

    Article  ADS  CAS  Google Scholar 

  77. N.M. Ravindra, S. Auluck, V.K. Srivastava, Phys. Status Solidi B 93(2), K155 (1979)

    Article  ADS  CAS  Google Scholar 

  78. V.P. Gupta, N.M. Ravindra, Phys. Stat. Sol. B 100, 715 (1980)

    Article  ADS  CAS  Google Scholar 

  79. P. Herve, L.K.J. Vandamme, Infrared Phys. Technol. 35(4), 609 (1994)

    Article  ADS  CAS  Google Scholar 

  80. P. Herve, L.K.J. Vandamme, J. Appl. Phys. 77(10), 5476 (1995)

    Article  ADS  CAS  Google Scholar 

  81. R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, G. Balakrishnaiah, M.R. Kumar, J. Alloys Compd. 473(1–2), 28 (2009)

    Article  CAS  Google Scholar 

  82. R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, C.K. Reddy, S.N. Ahmed, Opt. Mater. 31(2), 209 (2008)

    Article  ADS  CAS  Google Scholar 

  83. V. Kumar, J.K. Singh, Model for calculating the refractive index of different materials. (2010)

  84. S.K. Tripathy, Opt. Mater. 46, 240 (2015)

    Article  ADS  CAS  Google Scholar 

  85. J.A. Duffy, Bonding, Energy Levels, and Bands in Inorganic Solids (Longman Scientific and Technical, 1990)

  86. J.A. Duffy, J. Phys. C Solid State Phys. 13(16), 2979 (1980)

    Article  ADS  CAS  Google Scholar 

  87. D.S.L. Pontes, F.M. Pontes, L.F. da Silva, A.J. Chiquito, P.S. Pizani, E. Longo, J. Solgel Sci. Technol. 69, 605 (2014)

    Article  CAS  Google Scholar 

  88. L. Peters, E. Şaşıoğlu, S. Rossen, C. Friedrich, S. Blügel, M.I. Katsnelson, Phys. Rev. B 95(15), 155119 (2017)

    Article  ADS  Google Scholar 

  89. U. Seetawan, S. Jugsujinda, T. Seetawan, A. Ratchasin, C. Euvananont, C. Junin, C. Thanachayanont, P. Chainaronk, Mater. Sci. Appl. 2(09), 1302 (2011)

    CAS  Google Scholar 

  90. H. Fujimoto, S. Kato, Yamabe, K. Fukui, in Frontier Orbitals and Reaction Paths: Selected Papers of Kenichi Fukui (World Scientifuc Series in 20th Century Chemistry, 1997), p. 283

  91. S. Kato, H. Fujimoto, S. Yamabe, K. Fukui, J. Am. Chem. Soc. 96(7), 2024 (1974)

    Article  CAS  Google Scholar 

  92. D.C. Ghosh, S. Bhattacharyya, Int. J. Mol. Sci. 5(8), 239 (2004)

    Article  CAS  Google Scholar 

  93. D.C. Ghosh, Indian J. Pure Appl. Phys. 22(6), 346 (1984)

    CAS  Google Scholar 

  94. D.C. Ghosh, Indian J. Pure Appl. Phys. 27(4), 160 (1989)

    CAS  Google Scholar 

  95. H. Xiao, J. Tahir-Kheli, W.A. Goddard III., J. Phys. Chem. Lett. 2(3), 212 (2011)

    Article  CAS  Google Scholar 

  96. S. Saravanan, V. Balachandran, Spectrochim. Acta Part A 120, 351 (2014)

    Article  CAS  Google Scholar 

  97. F. Azam, N.H. Alabdullah, H.M. Ehmedat, A.R. Abulifa, I. Taban, S. Upadhyayula, J. Biomol. Struct. Dyn. 36(8), 2099 (2018)

    Article  CAS  PubMed  Google Scholar 

  98. M. Cardona, J. Res. Natl. Bur. Stand. Sect. A74(2), 253 (1970)

    Article  Google Scholar 

  99. R.G. Parr, Z. Zhou, Acc. Chem. Res. 26(5), 256 (1993)

    Article  CAS  Google Scholar 

  100. P.K. Chattaraj, S. Sengupta, J. Phys. Chem. A 103(31), 6122 (1999)

    Article  CAS  Google Scholar 

  101. R.G. Pearson, J. Chem. Educ. 64(7), 561 (1987)

    Article  CAS  Google Scholar 

  102. R.T. Sanderson, Science 114(2973), 670 (1951)

    Article  ADS  CAS  PubMed  Google Scholar 

  103. R.T. Sanderson, Science 116(3002), 41 (1952)

    Article  ADS  CAS  PubMed  Google Scholar 

  104. R.G. Parr, L.V. Szentpály, S. Liu, J. Am. Chem. Soc. 121(9), 1922 (1999)

    Article  CAS  Google Scholar 

  105. R.P. Ozerov, A.A. Vorobyev, Phys. Chem. (2007). https://doi.org/10.1016/B978-044452830-8/50006-4

    Article  Google Scholar 

  106. E.Y. Levitin, N.G. Kokodiy, V.A. Timanjuk, I.O. Vedernikova, T.M. Chan, Inorg. Mater. 50, 817 (2014)

    Article  CAS  Google Scholar 

  107. L. Pauling, J. Chem. Educ. 69(7), 519 (1992)

    Article  CAS  Google Scholar 

  108. N.M. O'Boyle, J.G. Vos, GaussSum 1.0, Dublin City University (2005)

  109. H. Du, Y. Jia, R.Q. Zhang, J. Theoret. Comput. Chem. 12(01), 1250094 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

SD and PR are thankful to the Manipal University Jaipur for providing research facilities and computational resources. TC is thankful to the Sharda University for providing research facilities and computational resources.

Funding

Dr. Tanmoy Chakraborty would like to acknowledge the funding support from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, under Grant No. [CRG/2020/002951]. Dr. Prabhat Ranjan would like to acknowledge the funding support from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, under Grant No. [CRG/2022/002539].

Author information

Authors and Affiliations

Authors

Contributions

SD is responsible for the original draft, data curation, resources PR is responsible for conceptualization, Data curation, Supervision, project administration, Resources TC is responsible for Supervision, Editing and Reviewing, Resources.

Corresponding authors

Correspondence to Prabhat Ranjan or Tanmoy Chakraborty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Ranjan, P. & Chakraborty, T. Study of oxide-based nano cluster X3O4 (X = Ti, Fe and Zn) for biomedical applications: a CDFT approach. J Math Chem (2024). https://doi.org/10.1007/s10910-023-01569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10910-023-01569-2

Keywords

Navigation