Skip to main content
Log in

Fe3O4 nanoparticles engineered for plasmid DNA delivery to Escherichia coli

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Heat shock treatment is the most popular method for transformation of Escherichia coli. We have used 19-nm Fe3O4 nanoparticles for improving heat shock protocol. PGEM-T (3,000 bp) and pCAMBIA (8,428 bp) were used as test plasmids for transformation of competent E. coli cells (strains DH5α and Jm107) obtained from heat shock- and CaCl2-treated bacteria. A combination of heat shock and Fe3O4 nanoparticles led to a significant increase (6–10 fold) in number of transformed colonies in comparison with heat shock alone. The percent increase in transformation efficiency was higher for larger pCAMBIA plasmids compared to PGEM-T. The transformation efficiency decreased in the absence of CaCl2 and increased by addition of glycerol to the bacterial culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chen J-Y, Liao Y-L, Wang T-H, Lee W-C (2006) Transformation of Escherichia coli mediated by magnetic nanoparticles in pulsed magnetic field. Enzyme Microbial Technol 39:366–370

    Article  Google Scholar 

  • Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    Article  Google Scholar 

  • Cymbalyuk E, Chernomordik L, Broude N, Chizmadzhev YA (1988) Electro-stimulated transformation of E. coli cells pretreated by EDTA solution. FEBS Lett 234:203–207

    Article  Google Scholar 

  • Divya Prakash G, Anish R, Jagadeesh G, Chakravortty D (2011) Bacterial transformation using micro-shock waves. Anal Biochem 419:292–301

    Article  Google Scholar 

  • Du G, Yang G, Qu Y, Chen J, Lun S (2005) Effects of glycerol on the production of poly (γ-glutamic acid) by Bacillus licheniformis. Process Biochem 40:2143–2147

    Article  Google Scholar 

  • Fan JS, Palade P (1998) Perforated patch recording with β-escin. Pflügers Arch 436:1021–1023

    Article  Google Scholar 

  • Fregel R, Rodriguez V, Cabrera V (2008) Microwave improved Escherichia coli transformation. Lett Appl Microbiol 46:498–499

    Article  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  Google Scholar 

  • Heidari Majd M, Asgari D, Barar J, Valizadeh H, Kafil V, Abadpour A, Moumivand E, Mojarrad JS, Rashidi MR, Coukos G, Omidi Y (2013a) Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf B Biointerfaces 106:117–125

    Article  Google Scholar 

  • Heidari Majd M, Asgari D, Barar J, Valizadeh H, Kafil V, Coukos G, Omidi Y (2013b) Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. J Drug Target 21:328–340

    Article  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  Google Scholar 

  • Kang SM, Choi IS, Lee K-B, Kim Y (2009) Bioconjugation of poly (poly (ethylene glycol) methacrylate)-coated iron oxide magnetic nanoparticles for magnetic capture of target proteins. Macromol Res 17:259–264

    Article  Google Scholar 

  • Kobayashi T, Akinori O, Shibuya I (1986) Membrane phospholipid synthesis in Escherichia coli: alteration by glycerol and physiological consequences in a pss mutant. J Biochem 99:1393–1400

    Google Scholar 

  • Konishi M, Watanabe M (1995) Molecular size-dependent leakage of intracellular molecules from frog skeletal muscle fibers permeabilized with β-escin. Pflügers Archiv 429:598–600

    Article  Google Scholar 

  • Kurien BT, Scofield RH (1995) Polyethylene glycol-mediated bacterial colony transformation. Biotechniques 18:1023–1026

    Google Scholar 

  • Kusters R, Breukink E, Gallusser A, Kuhn A, de Kruijff B (1994) A dual role for phosphatidylglycerol in protein translocation across the Escherichia coli inner membrane. J Biol Chem 269:1560–1563

    Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    Google Scholar 

  • Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv [Epub ahead of print]

  • Lill R, Dowhan W, Wickner W (1990) The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60:271–280

    Article  Google Scholar 

  • Lu CW, Hung Y, Yao M, Chung T, Lin Y (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7:149–154

    Article  Google Scholar 

  • Mah C, Fraites TJ Jr, Zolotukhin I, Song S, Flotte TR, Dobson J, Batich C, Byrne BJ (2002) Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther 6:106–112

    Article  Google Scholar 

  • Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    Article  Google Scholar 

  • McBain S, Yiu H, El Haj A, Dobson J (2007) Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J Mater Chem 17:2561–2565

    Google Scholar 

  • Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML (2013) Protein corona significantly reduces active targeting yield. Chem Commun 49:2557–2559

    Article  Google Scholar 

  • Opekarova M, Tanner W (2003) Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610:11–22

    Article  Google Scholar 

  • Park HY, Park HY, Schadt MJ, Lingyan I-Im, Lim S, Njoki PN, Kim SK, Jang MY, Luo J, Zhong CJ (2007) Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir 23:9050–9056

    Article  Google Scholar 

  • Ravnikar M, Irman A, Radic N, Lunder M, Strukelj B (2009) Chemoporation using saponins or cholates: an alternative method for transformation of bacterial cells. Biotechnol Lett 31:1943–1946

    Article  Google Scholar 

  • Rojas-Chapana J, Troszczynska J, Firkowska I, Morsczeck C, Giersig M (2005) Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells. Lab Chip 5:536–539

    Article  Google Scholar 

  • Saei AA, Mahmoudi M (2014). Toxicity of nanoparticles. in Nanoparticles for delivery of biotherapeutics, Future Med. [Epub ahead of print]

  • Saei AA, Najafi-Marandi P, Abhari A, de la Guardia M, Dolatabadi JEN (2013) Electrochemical biosensors for glucose based on metal nanoparticles. Trends Anal Chem 42:216–227

    Article  Google Scholar 

  • Sambrook J, Russell DW (2006) The Hanahan method for preparation and transformation of competent E. coli: high-efficiency transformation. Cold Spring Harbor Protocols 2006:pdb. prot3942

  • Shanehbandi D, Saei AA, Zarredar H, Barzegari A (2013) Vibration and glycerol-mediated plasmid DNA transformation for Escherichia coli. FEMS Microbiol Lett 348:74–78

    Article  Google Scholar 

  • Sheng Y, Mancino V, Birren B (1995) Transformation of Escherichia coli with large DNA molecules by electroporation. Nucleic Acids Res 23:1990–1996

    Article  Google Scholar 

  • Singh M, Yadav A, Ma X, Amoah E (2010) Plasmid DNA transformation in Escherichia Coli: effect of heat shock temperature, duration, and cold incubation of CaCl2 treated cells. Intl J Biotechnol Biochem 6:561–568

    Google Scholar 

  • Song Y et al (2007) Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Res 35:e129

    Article  Google Scholar 

  • Stuy JH, Walter RB (1986) Effect of glycerol on plasmid transfer in genetically competent Haemophilus influenzae. Mol Gen Genet 203:296–299

    Article  Google Scholar 

  • Tang X et al (1994) The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acids Res 22:2857–2858

    Article  Google Scholar 

  • Wang B, Xu C, Xie J, Yang Z, Sun S (2008) pH controlled release of chromone from chromone-Fe3O4 nanoparticles. J Am Chem Soc 130:14436–14437

    Article  Google Scholar 

  • Widder KJ, Senyei AE, Scarpelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med 158:141–146

    Article  Google Scholar 

  • Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21:1778–1780

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Sara Saei for editing the manuscript.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Omidi.

Additional information

Amir Ata Saei and Abolfazl Barzegari contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saei, A.A., Barzegari, A., Majd, M.H. et al. Fe3O4 nanoparticles engineered for plasmid DNA delivery to Escherichia coli . J Nanopart Res 16, 2521 (2014). https://doi.org/10.1007/s11051-014-2521-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2521-0

Keywords

Navigation