Skip to main content

Advertisement

Log in

Improving the diagnostic yield of magnetic resonance spectroscopy for pediatric brain tumors through mathematical optimization

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Brain tumors are the leading cause of cancer-related deaths among children. Increasing attention in pediatric neuro-oncology has been given to magnetic resonance spectroscopy (MRS). Notwithstanding the important achievements, the potential of MRS for pediatric neuro-oncology is yet to be realized. This is largely due to reliance upon inadequate signal processing methods based upon the fast Fourier transform (FFT) plus fitting. Herein, we applied an advanced signal processor, the fast Padé transform (FPT) to MRS time signals encoded in vivo from a glioma in a pediatric patient, using a 1.5T scanner. Three echo times (TE) were used: 22, 136 and 272 ms. Compared to those from the FFT, the total shape spectra from the FPT were better resolved. The most striking advantages of the FPT lie in its parametric capabilities from which component spectra were generated. At the shortest TE, for which spectral density is greatest, the FPT resolved the numerous overlapping resonances, delineating myoinositol and other short-lived metabolites. The FPT resolved components of diagnostically-important peaks centered at chemical shifts near 2.0, 3.0 and 3.2 parts per million. The latter includes not only free choline, but also the cancer biomarker, phosphocholine. An information-preserving procedure for suppression of residual water is introduced and validated, via windowing using a step function. This investigation demonstrates that mathematical optimization through the FPT can be successfully applied to MRS time signals encoded in vivo from pediatric brain tumors using standard clinical scanners at 1.5T. Improved diagnostic yield within pediatric neuro-oncology is anticipated thereby.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Note that Glx is often used as a joint acronym for both Glu and Gln.

  2. In Refs. [51, 52], K = 25 is used only as an example for the total number of resonances in the simulated FIDs. In reality, however, there is no upper bound on the total number K of resonances that can, in principle, be reconstructed by the FPT.

Abbreviations

Ace:

Acetate

Ala:

Alanine

Asp:

Aspartate

ARMA:

Autoregressive moving average

bl:

Band limited

BW :

Bandwidth

Cho:

Choline

Cr:

Creatine

DFT:

Discrete Fourier transform

DWI:

Diffusion weighted imaging

FFT:

Fast Fourier transform

FID:

Free induction decay

fMRI:

Functional MRI

FPT:

Fast Padé transform

FWHM:

Full width at half maximum

GABA:

Gamma amino butyric acid

GE:

General Electric

Gln:

Glutamine

Glu:

Glutamate

Glx:

Glutamine plus glutamate

HLSVD:

Hankel–Lanczos singular value decomposition

IDFT:

Inverse discrete Fourier transform

IFFT:

Inverse fast Fourier transform

Lac:

Lactate

Leu:

Leucine

Lip:

Lipids

m-Ins:

Myoinositol

MR :

Magnetic resonance

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MRSI:

Magnetic resonance spectroscopic imaging

ms :

Milliseconds

NAA:

N-acetyl aspartate

NAAG:

N-acetyl aspartyl glutamic acid

PC:

Phosphocholine

PCM:

Personalized cancer medicine

PCr:

Phosphocreatine

PRESS:

Point-resolved spectroscopy sequence

ppm:

Parts per million

rad:

Radian

s-Ins:

Scylloinositol

SNR:

Signal-noise ratio

SNS:

Signal-noise separation

SRI:

Spectral range of interest

SVD:

Singular value decomposition

Tau:

Taurine

TE:

Echo time

TR:

Repetition time

Val:

Valine

References

  1. L. Brandão, T.Y. Poussaint, Pediatric brain tumors. Neuroimaging Clin. N. Am. 23, 499–525 (2013)

    Article  Google Scholar 

  2. J. Crawford, Childhood brain tumors. Pediatr. Rev. 34, 63–78 (2013)

    Article  Google Scholar 

  3. E. Bouffet, U. Tabori, A. Huang, U. Bartels, Possibilities of new therapeutic strategies in brain tumors. Cancer Treat. Rev. 36, 335–341 (2010)

    Article  CAS  Google Scholar 

  4. F.S. Davis, Epidemiology of brain tumors. Expert Rev. Anticancer Ther. 7(Suppl. 12), S3–S6 (2007)

    Article  Google Scholar 

  5. J. Fisher, J.A. Schwartzbaum, M. Wrensch, J. Wiemels, Epidemiology of brain tumors. Neurol. Clin. 25, 867–890 (2007)

    Article  Google Scholar 

  6. M.J. Paldino, E.N. Faerber, T.Y. Poussaint, Imaging tumors of the pediatric central nervous system. Radiol. Clin. N. Am. 49, 589–616 (2011)

    Article  Google Scholar 

  7. A.E. Li, D.A. Bluemke, Magnetic resonance imaging, in Cancer Principles & Practice of Oncology, 6th edn., ed. by V.T. de Vita, S. Hellman, S.A. Rosenberg (Lippincott Williams & Wilkins, Philadelphia, 2001), pp. 669–679

    Google Scholar 

  8. S. Gudowius, V. Engelbrecht, M. Messing-Junger, G. Reifenberger, J. Gärtner, Diagnostic difficulties in childhood bilateral thalamic astrocytomas. Neuropediatrics 33, 331–335 (2002)

    Article  CAS  Google Scholar 

  9. Dž Belkić, K. Belkić, Signal Processing in Magnetic Resonance Spectroscopy with Biomedical Applications (Taylor & Francis, London, 2010)

    Book  Google Scholar 

  10. P. Svolos, E. Kousi, E. Kapsalaki, K. Theodorou, I. Fezoulidis, C. Kappas, I. Tsougos, The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future perspectives. Cancer Imaging 14, 20 (2014)

    Google Scholar 

  11. K. Sartor, M. Hartmann, J. Fiebach, I. Harting, T. Wilhelm, S. Heiland, Normal and abnormal water diffusion in the brain. Rofo. Fortschr. Geb. Rontgenstr. Neuen Bildgeb. Verfahr. 175, 1317–1329 (2003)

    Article  CAS  Google Scholar 

  12. A. Horská, D.D.M. Lin, MRI of the brain, in Magnetic Resonance Imaging and Spectroscopy, Volume 3 of Comprehensive Biomedical Physics, ed. by Dž. Belkić, K. Belkić (Elsevier, Amsterdam, 2014), pp. 99–114

  13. M. Nakaiso, M. Uno, M. Harada, T. Kageji, O. Takimoto, S. Nagahiro, Brain abscess and glioblastoma identified by combined proton magnetic resonance spectroscopy and diffusion-weighted magnetic resonance imaging—two case reports. Neurol. Med. Chir. (Tokyo) 42, 346–348 (2002)

    Article  Google Scholar 

  14. A.S. Bick, N. Levin, G. Goelman, Functional magnetic resonance imaging (fMRI), in Magnetic Resonance Imaging and Spectroscopy, Volume 3 of Comprehensive Biomedical Physics, ed. by Dž. Belkić, K. Belkić (Elsevier, Amsterdam, 2014), pp. 69–80

  15. A. Ramos, A. Hilario, A. Lagares, E. Salvador, A. Perez-Nuñez, J. Sepulveda, Brainstem gliomas. Semin. Ultrasound CT MRI 34, 104–112 (2013)

    Article  Google Scholar 

  16. S.J. Nelson, Multivoxel magnetic resonance spectroscopy of brain tumors. Mol. Cancer Ther. 2, 497–507 (2003)

    CAS  Google Scholar 

  17. L.A. Brandão, R.C. Domingues, MR Spectroscopy of the Brain (Lippincott Williams & Wilkins, Philadelphia, 2004)

    Google Scholar 

  18. P.E. Sijens, M. Oudkerk, \(^{1}\)H chemical shift imaging characterization of human brain tumor and edema. Eur. Radiol. 12, 2056–2061 (2002)

    Article  Google Scholar 

  19. W. Möller-Hartmann, S. Herminghaus, T. Krings, G. Marquardt, H. Lanfermann, U. Pilatus, F. Zanella, Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44, 371–381 (2002)

    Article  Google Scholar 

  20. A. Panigrahy, M.D. Krieger, I. Gonzalez-Gomez, X. Liu, J.G. McComb, J.L. Finlay, M.D. Nelson, F.H. Gilles, S. Blüml, Metabolism of diffuse intrinsic brainstem gliomas in children. Neuro Oncol. 10, 32–44 (2008)

    Article  CAS  Google Scholar 

  21. L. Porto, M. Kieslich, K. Franz, T. Lehrnbecher, F. Zanella, U. Pilatus, E. Hattingen, MRS differentiation between high and low grade astrocytomas: comparison between paediatric and adult tumours. Eur. J. Paediatr. Neurol. 15, 214–221 (2011)

    Article  Google Scholar 

  22. N.P. Davies, M. Wilson, L.M. Harris, K. Natarajan, S. Lateef, L. MacPherson, S. Sgouros, R.G. Grundy, T. Arvanitis, A. Peet, Identification and characterization of childhood cerebellar tumors by in vivo proton MRS. NMR Biomed. 21, 908–918 (2008)

    Article  CAS  Google Scholar 

  23. L.M. Harris, N. Davies, L. Macpherson, K. Foster, S. Lateef, K. Natarajan, S. Sgouros, M.A. Brundler, T. Arvanitis, R. Grundy, A. Peet, The use of short-echo-time 1H MRS for childhood cerebellar tumors prior to histopathological diagnosis. Pediatr. Radiol. 37, 1101–1109 (2007)

    Article  Google Scholar 

  24. J. Vicente, E. Fuster-Garcia, S. Tortajada, J.M. García-Gómez, N. Davies, K. Natarajan, M. Wilson, R.G. Grundy, P. Wesseling, D. Monleón, B. Celda, M. Robles, A.C. Peet, Accurate classification of childhood brain tumours by in vivo 1H MRS—a multi-centre study. Eur. J. Cancer 49, 658–667 (2013)

    Article  Google Scholar 

  25. S.J. Hipp, E. Steffen-Smith, D. Hammoud, J.H. Shih, R. Bent, K.E. Warren, Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro Oncol. 13, 904–909 (2011)

    Article  Google Scholar 

  26. K.J. Marcus, L.G. Astrakas, D. Zurakowski, M.K. Zarifi, D. Mintzopoulos, T.Y. Poussaint, D.C. Anthony, U. De Girolami, P. Black, N.J. Tarbell, A.A. Tzika, Predicting survival of children with CNS tumors using proton MRSI biomarkers. Int. J. Oncol. 30, 651–657 (2007)

    CAS  Google Scholar 

  27. M. Wilson, C.L. Cummins, L. MacPherson, Y. Sun, K. Natarajan, R.G. Grundy, T.N. Arvanitis, R.A. Kauppinen, A.C. Peet, Magnetic resonance spectroscopy metabolite profiles predict survival in pediatric brain tumours. Eur. J. Cancer 49, 457–464 (2013)

  28. S. Blamek, D. Larysz, K. Ficek, M. Sokoł, L. Miszczyk, R. Tarnawski, MRS evaluation of brain tissue damage after treatment for pediatric brain tumors. Acta Neurochirurg. (Suppl.) 106, 183–186 (2010)

    Article  Google Scholar 

  29. S. Rueckriegel, P.H. Driever, H. Bruhn, Supratentorial neurometabolic alterations in pediatric survivors of posterior fossa tumors. Int. J. Radiat. Oncol. Biol. Phys. 82, 1135–1141 (2012)

    Article  Google Scholar 

  30. A.A. Tzika, L.G. Astrakas, M.K. Zarifi, N. Petridou, T.Y. Poussaint, L. Goumnerova, D. Zurakowski, D.C. Anthony, P.M. Black, Multi-parametric MR assessment of pediatric brain tumors. Neuroradiology 45, 1–10 (2003)

    Article  CAS  Google Scholar 

  31. A.A. Tzika, D. Zurakowski, T.Y. Poussaint, L. Goumnerova, L.G. Astrakas, P.D. Barnes, D.C. Anthony, A.L. Billett, N.J. Tarbell, R.M. Scott, P.M. Black, Proton magnetic spectroscopic imaging of the child’s brain: the response of tumors to treatment. Neuroradiology 43, 169–177 (2001)

    Article  CAS  Google Scholar 

  32. M. Wilson, N.P. Davies, M.A. Brundler, C. McConville, R.G. Grundy, A.C. Peet, High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumors. Mol. Cancer 8, 11 (2009)

    Article  Google Scholar 

  33. L.M. Harris, N.P. Davies, L. Macpherson, S. Lateef, K. Natarajan, M.A. Brundler, S. Sgouros, M.W. English, T.N. Arvanitis, R.G. Grundy, A.C. Peet, Magnetic resonance spectroscopy in the assessment of pilocytic astrocytomas. Eur. J. Cancer 44, 2640–2647 (2008)

    Article  Google Scholar 

  34. F. Yamasaki, K. Kurisu, Y. Kajiwara, Y. Watanabe, T. Takayasu, Y. Akiyama, T. Saito, R. Hanaya, K. Sugiyama, Magnetic resonance spectroscopic detection of lactate is predictive of a poor prognosis in patients with diffuse intrinsic pontine glioma. Neuro Oncol. 13, 791–801 (2011)

    Article  Google Scholar 

  35. R. Kreis, T. Ernst, B.D. Ross, Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn. Reson. Med. 30, 424–437 (1993)

    Article  CAS  Google Scholar 

  36. Dž Belkić, K. Belkić, A meta-analysis of studies using MR spectroscopy for evaluating suspicious lesions after radiation therapy of primary brain tumors. J. Math. Chem. 50, 2527–2557 (2012)

    Article  Google Scholar 

  37. Dž Belkić, Quantum-Mechanical Signal Processing and Spectral Analysis (Institute of Physics Publishing, Bristol, 2005)

    Google Scholar 

  38. Dž Belkić, Strikingly stable convergence of the Fast Padé transform (FPT) for high-resolution parametric and non-parametric signal processing of Lorentzian and non-Lorentzian spectra. Nucl. Instrum. Methods Phys. Res. A 525, 366–371 (2004)

    Article  Google Scholar 

  39. P.A. Bottomley, The trouble with spectroscopy papers. J. Magn. Reson. Imaging 2, 1–8 (2002)

    Article  Google Scholar 

  40. B. Ciskowska-Lyson, L. Krolicki, A. Teska, A. Janowicz-Zebrowska, K. Zajda, M. Krzakowski, E. Tacikowska, Proton magnetic resonance spectroscopy investigations in brain metabolic changes after first doses of chemotherapy. MAGMA 15(Suppl. 1), 149 (2002)

    Google Scholar 

  41. E.R. Danielsen, B. Ross, Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases (Marcel Dekker Inc, New York, 1999)

    Google Scholar 

  42. M. Kaminogo, H. Ishimaru, M. Morikawa, M. Ochi, R. Ushijima, M. Tani, Y. Matsuo, J. Kawakubo, S. Shibata, Diagnostic potential of short echo time MR spectroscopy of gliomas with single-voxel and point-resolved spatially localized proton spectroscopy of brain. Neuroradiology 43, 353–363 (2001)

    Article  CAS  Google Scholar 

  43. C.K. Kim, B.K. Park, Update of prostate magnetic resonance imaging at 3T. J. Comput. Assist. Tomogr. 32, 163–172 (2008)

    Article  Google Scholar 

  44. J.D. Rabinov, P.L. Lee, F.G. Barker, D.N. Louis, G.R. Harsh, G.R. Cosgrove, E.A. Chiocca, A.F. Thornton, J.S. Loeffler, J.W. Henson, R.G. Gonzalez, In vivo 3T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225, 871–879 (2002)

    Article  CAS  Google Scholar 

  45. D. Vigneron, A. Bollen, M. McDermott, L. Wald, M. Day, S. Moyher-Noworolski, R. Henry, S. Chang, M. Berger, W. Dillon, S. Nelson, Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors. Magn. Reson. Imaging 19, 89–101 (2001)

    Article  CAS  Google Scholar 

  46. E. Hattingen, U. Pilatus, K. Franz, F.E. Zanella, H. Lanfermann, Evaluation of optimal echo time for 1H spectroscopic imaging of brain tumors at 3 tesla. J. Magn. Reson. Imaging 26, 427–431 (2007)

    Article  Google Scholar 

  47. A.C. Peet, S. Lateef, L. MacPherson, K. Natarajan, S. Sgouros, R.G. Grundy, Short echo time 1H magnetic resonance spectroscopy of childhood brain tumors. Childs Nerv. Syst. 23, 163–169 (2007)

    Article  CAS  Google Scholar 

  48. A.A. Tzika, L.L. Cheng, L. Goumnerova, J.R. Madsen, D. Zurakowski, L.G. Astrakas, M.K. Zarifi, R.M. Scott, D.C. Anthony, R.G. Gonzalez, P.M. Black, Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J. Neurosurg. 96, 1023–1031 (2002)

    Article  CAS  Google Scholar 

  49. K. Glunde, J. Jiang, S.A. Moestue, I.S. Gribbestad, MRS/MRSI guidance in molecular medicine: targeting choline and glucose metabolism. NMR Biomed. 24, 673–690 (2011)

    Article  CAS  Google Scholar 

  50. S.W. Provencher, Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679 (1993)

    Article  CAS  Google Scholar 

  51. Dž Belkić, Exact quantification of time signals in Padé-based magnetic resonance spectroscopy. Phys. Med. Biol. 51, 2633–2670 (2006)

    Article  Google Scholar 

  52. Dž Belkić, Exponential convergence rate of the FPT for exact quantification in magnetic resonance spectroscopy. Phys. Med. Biol. 51, 6483–6512 (2006)

    Article  Google Scholar 

  53. Dž Belkić, Exact signal-noise separation by Froissart doublets in the fast Padé transform for magnetic resonance spectroscopy. Adv. Quantum Chem. 56, 95–179 (2009)

    Article  Google Scholar 

  54. Dž Belkić, Error analysis through residual frequency spectra in the fast Padé transform (FPT). Nucl. Instrum. Methods Phys. Res A 525, 379–386 (2004)

    Article  Google Scholar 

  55. Dž Belkić, K. Belkić, The fast Padé transform in magnetic resonance spectroscopy for potential improvements in early cancer diagnostics. Phys. Med. Biol. 50, 4385–4408 (2005)

    Article  Google Scholar 

  56. Dž Belkić, K. Belkić, In vivo magnetic resonance spectroscopy by the fast Padé transform. Phys. Med. Biol. 51, 1049–1075 (2006)

    Article  Google Scholar 

  57. Dž Belkić, Machine accurate quantification in magnetic resonance spectroscopy. Nucl. Instrum. Methods Phys. Res. A 580, 1034–1040 (2007)

    Google Scholar 

  58. Dž Belkić, K. Belkić, The potential for practical improvements in cancer diagnostics by mathematically optimized magnetic resonance spectroscopy. J. Math. Chem. 49, 2408–2440 (2011)

    Article  Google Scholar 

  59. Dž Belkić, K. Belkić, Molecular imaging and magnetic resonance for improved target definition in radiation oncology, in Radiation Damage to Biomolecular Systems, ed. by G. Gómez, M.C. Fuss (Springer, Berlin, 2012), pp. 411–429

    Chapter  Google Scholar 

  60. J. Frahm, H. Bruhn, M.L. Gyngell, K.D. Merboldt, W. Hänicke, R. Sauter, Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn. Reson. Med. 9, 79–93 (1989)

    Article  CAS  Google Scholar 

  61. Dž Belkić, K. Belkić, Unequivocal disentangling genuine from spurious information in time signals: clinical relevance in cancer diagnostics through magnetic resonance spectroscopy. J. Math. Chem. 44, 884–912 (2008)

    Article  Google Scholar 

  62. Dž Belkić, K. Belkić, Quantification by the fast Padé transform of magnetic resonance spectroscopic data encoded at 1.5 T. J. Math. Chem. 54, 602–655 (2016)

    Article  Google Scholar 

  63. I. Tkáč, P. Andersen, G. Adriany, H. Merkle, K. Uğurbil, R. Gruetter, In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn. Reson. Med. 46, 451–456 (2001)

    Article  Google Scholar 

  64. Dž Belkić, K. Belkić, Strategic steps for advanced molecular imaging with magnetic resonance-based diagnostic modalities. Technol. Cancer Res. Treat. 14, 119–142 (2015)

    Google Scholar 

  65. Dž Belkić, K. Belkić, Resolution enhancement as a key step towards clinical implementation of Padé-optimized magnetic resonance spectroscopy for diagnostic oncology. J. Math. Chem. 51, 2608–2637 (2013)

    Article  Google Scholar 

  66. N.A. Sibtain, F.A. Howe, D.E. Saunders, The clinical value of proton magnetic resonance spectroscopy in adult brain tumors. Clin. Radiol. 62, 109–119 (2007)

    Article  CAS  Google Scholar 

  67. E. Hattingen, P. Raab, K. Franz, F.E. Zanella, H. Lanfermann, U. Pilatus, Myo-inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed. 21, 233–241 (2008)

    Article  CAS  Google Scholar 

  68. C. Majós, C. Aguilera, M. Juliá-Sapé, A. León, Á. Rovira, C. Arús, Proton MR spectroscopy improves discrimination between tumor and pseudotumoral lesion in solid brain masses. Am. J. Neuroradiol. 30, 544–551 (2009)

    Article  Google Scholar 

  69. N. Fayed, E. Gonzalez-Toledo, in Magnetic Resonance Imaging and Spectroscopy, Volume 3 of Comprehensive Biomedical Physics, ed. by Dž. Belkić, K. Belkić (Elsevier, Amsterdam, 2014), pp. 273–285

Download references

Acknowledgments

This work was supported by the King Gustav the 5th Jubilee Fund and FoUU through Stockholm County Council to which the authors are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dževad Belkić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkić, D., Belkić, K. Improving the diagnostic yield of magnetic resonance spectroscopy for pediatric brain tumors through mathematical optimization. J Math Chem 54, 1461–1513 (2016). https://doi.org/10.1007/s10910-016-0632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0632-9

Keywords

Navigation