Skip to main content
Log in

Modelling and MD simulations on ultra-filtration using graphene sheet

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we investigate the ion rejection of salt water using graphene sheet as a semi-permeable membrane. Both the mathematical modeling and MD simulations will be performed to determine the acceptance conditions for a water molecule or a sodium ion permeating into the membrane. Chloride ion is always blocked by the graphene due to the fact that the ionic size of the chloride ion is larger than the pore size of the graphene leaving the sieve of water and sodium ions which depends on the strength of the external forces. In particular, certain ranges of the external forces will be theoretically deduced for the complete desalination, which turn out to depend intimately on the size of the permeate container and the hydraulic force acting among salt water. In this paper, we reduce the multi-body system into several two-body systems and reduce the 3D problem into degenerated 1D problems using the continuous approximation, where the molecular interactions between the water molecule or the sodium ion and the graphene could be determined in terms of surface integrals. Given the force fields between the intruder and the membrane, MD simulations could be used to investigate the time evolution of the system and compare with the theoretical results deduced by the present mathematical model. We confirm the computational results given by Tanugi and Grossman (Nano Lett 12:3602–3608, 2012). Moreover, our approach is computationally rapid and generates inductive results for more engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.C. Tanugi, J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012)

    Article  Google Scholar 

  2. T. Hilder, D. Gordon, S. Chung, Salt rejection and water transport through boron nitride nanotubes. Small 5, 2183–2190 (2009)

    Article  CAS  Google Scholar 

  3. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)

    Article  CAS  Google Scholar 

  4. B. Corry, Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008)

    Article  CAS  Google Scholar 

  5. C. Song, B. Corry, Intrinsic ion selectivity of narrow hydrophobic pores. J. Phys. Chem. B 113, 7642–7649 (2009)

    Article  CAS  Google Scholar 

  6. A. Berezhkovskii, G. Hummer, Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 89, 064503 (2002)

    Article  Google Scholar 

  7. G. Zuo, R. Shen, S. Ma, W. Guo, Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel. ACS Nano 4, 205–210 (2010)

    Article  CAS  Google Scholar 

  8. A. Kalra, S. Garde, G. Hummer, Osmotic water transport through carbon nanotube membranes. PNAS 100, 10175–10180 (2003)

    Article  CAS  Google Scholar 

  9. M.S.P. Sansom, I.H. Shrivastava, K.M. Ranatunga, G.R. Smith, Simulations of ion channels watching ions and water move. Trends Biochem. Sci. 25, 368–374 (2000)

    Article  CAS  Google Scholar 

  10. M. Theresa, M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011)

    Article  Google Scholar 

  11. Y. Chan, J.M. Hill, A mechanical model for single-file transport of water through carbon nanotube membranes. J. Membr. Sci. 372, 57–65 (2011)

    Article  CAS  Google Scholar 

  12. Y. Chan, J.M. Hill, Modeling on ion rejection using membranes comprising ultra-small radii carbon nanotubes. Eur. Phys. J. B 85, 56 (2012)

    Article  Google Scholar 

  13. Y. Chan, Mathematical modeling on ultra-filtration using functionalized carbon nanotubes. Appl. Mech. Mater. 51, 1258–1273 (2013)

    Article  Google Scholar 

  14. H.J. Sung et al., Using nanoscale theromocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat. Nanotechnol. 8, 347–355 (2013)

    Article  Google Scholar 

  15. W.A.D. Heer, C. Berger, Editorial: epitaxial graphene. J. Phys. D Appl. Phys. 45, 150301 (2012)

    Article  Google Scholar 

  16. J.Y. Choi, A stamp for all substrates. Nature 8, 311–312 (2013)

    CAS  Google Scholar 

  17. B.J. Cox, N. Thamwattana, J.M. Hill, Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. Proc. R. Soc. Lond. Ser. A 463, 461 (2007)

    Article  CAS  Google Scholar 

  18. B.J. Cox, N. Thamwattana, J.M. Hill, Mechanics of atoms and fullerenes in single-walled carbon nanotubes. II. Oscillatory behaviour. Proc. R. Soc. Lond. Ser. A 463, 477 (2007)

    Article  CAS  Google Scholar 

  19. Y. Chan, N. Thamwattana, J.M. Hill, Axial buckling of multi-walled carbon nanotubes and nanopeapods. Eur. J. Mech. A Solid 30, 794–806 (2011)

    Article  Google Scholar 

  20. X.Q. He, S. Kitipornchai, K.M. Liew, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der waals interactions. J. Mech. Phys. Solids 53, 303–326 (2005)

    Article  CAS  Google Scholar 

  21. D. Baowan, K. Chayantrakom, P. Satiracoo, B.J. Cox, Mathematical modelling for equilibrium configurations of concentric gold nanoparticles as potential application in drug and gene delivery. J. Math. Chem. 49, 1042–1053 (2011)

    Article  CAS  Google Scholar 

  22. T.A. Hilder, J.M. Hill, Modeling the loading and unloading of drugs into nanotubes. Small 5, 300–308 (2009)

    Article  CAS  Google Scholar 

  23. Y. Chan, J.M. Hill, Dynamics of benzene molecules situated in metal-organic frameworks. J. Math. Chem. 49, 2190–2209 (2011)

    Article  CAS  Google Scholar 

  24. Y. Chan, J.M. Hill, Lithium ions storage between two graphene sheets. Nanoscale Res. Lett. 6, 203 (2011)

    Article  Google Scholar 

  25. Y. Chan, J.M. Hill, Modelling interaction of atoms and ions with graphene. Micro Nano Lett. 5, 247–250 (2010)

    Article  CAS  Google Scholar 

  26. Y. Chan, J.M. Hill, Hydrogen storage inside graphene-oxide frameworks. Nanotechnology 22, 305403 (2011)

    Article  Google Scholar 

  27. A.W. Thornton, K.M. Nairn, J.M. Hill, A.J. Hill, M.R. Hill, Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage. J. Am. Chem. Soc. 131, 10662–10669 (2009)

    Article  CAS  Google Scholar 

  28. W.X. Lim, A.W. Thornton, A.J. Hill, B.J. Cox, J.M. Hill, M.R. Hill, High performance hydrogen storage from Be-BTB metal-organic framework at room temperature. Langmuir 29, 8524–8533 (2013)

    Article  CAS  Google Scholar 

  29. Y. Chan, R.K. Lee, J.M. Hill, Metallofullerenes in composite carbon nanotubes as a nanocomputing memory device. IEEE Trans. Nanotechnol. 10, 947–952 (2010)

    Article  Google Scholar 

  30. Y. Chan, Mathematical modeling and simulations on massive hydrogen yield using functionalized nanomaterials. J. Math. Chem. 53, 1280–1293 (2015)

    Article  CAS  Google Scholar 

  31. Y. Chan, L. Xia, Y. Ren, Y.-T. Chen, Multi-scale modelling on PM2.5 encapsulation inside doubly-layered graphene. Micro Nano Lett. 10, 696–699 (2015)

    Article  Google Scholar 

  32. Y. Chan, J.M. Hill, Ion selectivity using membranes comprising functionalized carbon nanotubes. J. Math. Chem. 51, 1258–1273 (2013)

    Article  Google Scholar 

  33. T. Pang, An Introduction to Computational Physics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  34. J.E. Jones, On the determination of molecular fileds. I. From the variation of the viscosity of a gas with temperature. Proc. R. Soc. 106A, 441 (1924)

    Article  Google Scholar 

  35. M. Sprik, M.L. Klein, K. Watanabe, Solvent polarization and hydration of the chlorine anion. J. Phys. Chem. 94, 6483–6488 (1990)

    Article  CAS  Google Scholar 

  36. E. Weinan, Principles of Multiscale Modeling (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  37. G.C. Maitland, M. Rigby, E.B. Smith, W.A. Wakeham, Intermolecular Forces—Their Origin and Determination (Clarendon Press, Oxford, 1981)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from small research Grant (UNNC), and Ningbo Natural Science Foundation (2014A610025) and (2014A610172), and Qianjiang Talent Scheme (QJD1402009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, Y. Modelling and MD simulations on ultra-filtration using graphene sheet. J Math Chem 54, 1041–1056 (2016). https://doi.org/10.1007/s10910-016-0606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0606-y

Keywords

Navigation