Skip to main content
Log in

Dynamics of benzene molecules situated in metal-organic frameworks

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we investigate the gyroscopic motion of a benzene molecule C6H6, which comprises an inner carbon ring and an outer hydrogen ring, and is suspended rigidly inside a metal-organic framework. The metal-organic framework provides a sterically unhindered environment and an electronic barrier for the benzene molecule. We model such gyroscopic motion from the inter-molecular interactions between the benzene ring and the metal-organic framework by both the Columbic force and the van der Waals force. We also capture additional molecular interactions, for example due to sterical compensations arising from the carboxylate ligands between the benzene molecule and the framework, by incorporating an extra empirical energy into the total molecular energy. To obtain a continuous approximation to the total energy of such a complicated atomic system, we assume that the atoms of the metal-organic framework can be smeared over the surface of a cylinder, while those for the benzene molecule are smeared over the contour line of the molecule. We then approximate the pairwise molecular energy between the molecules by performing line and surface integrals. We firstly investigate the freely suspended benzene molecule inside the framework and find that our theoretical results admit a two-fold flipping, with the possible maximum rotational frequency reaching the terahertz regime, and gigahertz frequencies at room temperature. We also show that the electrostatic interaction and the thermal energy dominate the gyroscopic motion of the benzene molecule, and we deduce that the extra energy term could possibly reduce the rotational frequency of the rigidly suspended benzene molecule from gigahertz to megahertz frequencies at room temperature, and even lower frequencies might be obtained when the strength of these interactions increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Itoh H., Takahashi A., Adachi K., Noji H., Yasuda R., Yoshida M., Kinosita K.: Mechanically driven ATP synthesis by F-1-ATPase. Nature 427, 465–468 (2004)

    Article  CAS  Google Scholar 

  2. Boyer P.D.: Molecular motors—what makes ATP synthase spin?. Nature 402, 247 (1999)

    Article  CAS  Google Scholar 

  3. Yasuda R., Noji H., Kinosita K., Yoshida M.: F-1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degrees steps. Cell 93, 1117–1124 (1998)

    Article  CAS  Google Scholar 

  4. Schliwa M., Woehlke G.: Molecular motors. Nature 422, 759–765 (2003)

    Article  CAS  Google Scholar 

  5. Kottas G.S., Clarke L.I., Horinek D., Michl J.: Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2007)

    Article  Google Scholar 

  6. Vacek J., Michl J.: Artifical surface-mounted molecular rotors: Molecular dynamics simulations. Adv. Funct. Mater. 17, 730–739 (2007)

    Article  CAS  Google Scholar 

  7. Horinek D., Michl J.: Molecular dynamics simulation of an electric field driven dipolar molecular rotor attached to a quartz glass surace. J. Am. Chem. Soc. 125, 11900–11910 (2003)

    Article  CAS  Google Scholar 

  8. Horinek D., Michl J.: Surface-mounted altitudinal molecular rotors in alternating electric field: Single-molecular parametric oscillator molecular dynamics. Proc. Natl. Acad. Sci. USA 102, 14175–14180 (2005)

    Article  CAS  Google Scholar 

  9. Vacek J., Michl J.: A molecular ‘tinkertoy’ construction kit: Computer simulation of molecular propellers. New J. Chem. 21, 1259–1268 (1997)

    CAS  Google Scholar 

  10. Kay E.R., Leigh D.A., Zerbetto F.: Synthetic molecular motors and mechanical machines. Angew. Chem., Int. Ed. 46, 72–191 (2007)

    Article  CAS  Google Scholar 

  11. Mandl C.P., Konig B.: Chemistry in motion-Unidirectional rotating molecular motors. Angew. Chem. Int. Ed. 43, 1622–1624 (2004)

    Article  CAS  Google Scholar 

  12. Kelly T.R.: Progress toward a rationally designed molecular motor. Acc. Chem. Res. 34, 514–522 (2001)

    Article  CAS  Google Scholar 

  13. Somada H., Hirahara K., Akita S., Nakayama Y.: A molecular linear motor consisting of carbon nanotubes. Nano Lett. 9, 62–65 (2009)

    Article  CAS  Google Scholar 

  14. Haidekker M.A., Theodorakis E.A.: Molecular rotors-Fluorescent biosensors for viscosity and flow. Org. Biomol. Chem. 5, 1669–1678 (2007)

    Article  CAS  Google Scholar 

  15. Haidekker M.A., Brady T., Wen K., Okada C., Stevens H.Y., Snell J.M., Frangos J.A., Theodorakis E.A.: Phospholipid-bound molecular rotors: synthesis and characterization. Bioorg. Med. Chem. 10, 3627–3636 (2002)

    Article  CAS  Google Scholar 

  16. Kuimova M.K., Yahioglu G., Levitt J.A., Suhling K.: Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J. Am. Chem. Soc. 130, 6672–6673 (2008)

    Article  CAS  Google Scholar 

  17. Haidekker M.A., Brady T.P., Chalian S.H., Akers W., Lichlyter D., Teodorakis E.A.: Molecular rotor derivatives-Synthesis and characterization. Bioorg. Chem. 32, 274–289 (2004)

    Article  CAS  Google Scholar 

  18. Sasaki T., Osgood A.J., Alemany L.B., Kelly K.F., Tour J.M.: Synthesis of a nanocar with an angled chassis. Toward circling movement. Org. Lett. 10, 229–323 (2008)

    CAS  Google Scholar 

  19. Sasaki T., Tour J.M.: Synthesis of a dipolar nanocar. Tetrahedron Lett. 48, 5821–5824 (2007)

    Article  CAS  Google Scholar 

  20. Shirai Y., Osgood A.J., Zhao Y.M., Yao Y.X., Saudan L., Yang H.B., Chiu Y.H., Alemany L.B., Sakaki T., Morin J.F., Guerrero J.M., KellyK.F. Tour J.M.: Surface-rolling molecules. J. Am. Chem. Soc. 128, 4854–4864 (2006)

    Article  CAS  Google Scholar 

  21. Chiaravalloti F., Gross L., Rieder K.H., Stojkovic S.M., GourdonA. Joachim C., Moresco F.: A rack-and-pinion device at the molecular scale. Nat. Mater. 6, 30–33 (2007)

    Article  CAS  Google Scholar 

  22. Akimov A.V., Nemukhin A.V., Moskovsky A.A., Kolomeisky A.B., Tour J.M.: Molecular dynamics of surface moving thermally driven nanocars. J. Chem. Theory Comput. 4, 652–656 (2008)

    Article  CAS  Google Scholar 

  23. Clayden J., Greeves N., Warren S., Wothers P.: Organic Chemistry. Oxford University Press, Oxford (2001)

    Google Scholar 

  24. Hermes S., Schroder F., Chelmowski R., Woll C., Fischer R.A.: Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005)

    Article  CAS  Google Scholar 

  25. Hermes S., Zacher D., Baunemann A., Woll C., Fischer R.A.: Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers. Chem. Mater. 19, 2168–2173 (2007)

    Article  CAS  Google Scholar 

  26. Biemmi E., Scherb C., Bein T.: Oriented growth of the metal organic framework Cu-3(BTC)(2)(H2O)(3)·xH(2)O tunable with functionalized self-assembled monolayers. J. Am. Chem. Soc. 129, 8054 (2007)

    Article  CAS  Google Scholar 

  27. Zacher D., Baunemann A., Hermes S., Fischer R.A.: Deposition of microcrystalline [Cu-3(btc)(2)] and [Zn-2(bdc)(2)(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: Evidence of surface selective and oriented growth. J. Mater. Chem. 17, 2785–2792 (2007)

    Article  CAS  Google Scholar 

  28. Yoo Y., Lai Z., Jeong H.K.: Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater. 123, 100–106 (2009)

    Article  CAS  Google Scholar 

  29. Rosi N.L., Eckert J., Eddaoudi M., Vodak D.T., Kim J., O’Keeffe M., Yaghi O.M.: Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)

    Article  CAS  Google Scholar 

  30. Rowsell J.L.C., Spencer E.C., Eckert J., Howard J.A.K., Yaghi O.M.: Gas adsorption sites in a large-pore metal-organic framework. Science 309, 1350–1354 (2005)

    Article  CAS  Google Scholar 

  31. Babarao R., Hu Z.Q., Jiang J.W., Chempath S., Sandler S.I.: Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: A comparative study from monte carlo simulation. Langmuir 23, 659–666 (2007)

    Article  CAS  Google Scholar 

  32. Bordiga S., Lamberti C., Ricchiardi G., Regli L., Bonino F., Damin A., Lillerud K.P., Bjorgen M., Zecchina A.: Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 20, 2300–2301 (2004)

    Article  Google Scholar 

  33. Mueller U., Schubert M., Teich F., Puetter H., Schierle-Arndt K., Pastre J.: Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)

    Article  CAS  Google Scholar 

  34. Huang B.L., Ni Z., Millward A., McGaughey A.J.H., Uher C., Kaviany M., Yaghi O.: Thermal conductivity of a metal-organic framework (MOF-5): PartII Measurement. Int. J. Heat Mass Transfer 50, 405–411 (2007)

    Article  CAS  Google Scholar 

  35. Civalleri B., Napoli F., Noel Y., Roetti C., Dovesi R.: Ab-initio prediction of materials properties with crystal: MOF-5 as a case study. Cryst. Eng. Comm. 8, 364–371 (2006)

    CAS  Google Scholar 

  36. Greathouse J.A., Allendorf M.D.: The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 13312–13312 (2006)

    Article  CAS  Google Scholar 

  37. Amirjalayer S., Tafipolsky M., Schmid R.: Molecular dynamics simulation of benzene diffusion in MOF-5: Importance of lattice dynamics. Angew. Chem., Int. Ed. 46, 463–466 (2007)

    Article  CAS  Google Scholar 

  38. Devi R.N., Edgar M., Gonzalez J., Slawin A.M.Z., Tunstall D.P., GrewalP. Cox P.A., Wright P.A.: Structural studies and computer simulation of the inclusion of aromatic hydrocarbons in a zinc 2,6-naphthalene dicarboxylate framework compound. J. Phys. Chem. B 108, 535–543 (2004)

    Article  CAS  Google Scholar 

  39. Winston E.B., Lowell P.J., Vacek J., Chocholousova J., Michl J., Price J.C.: Dipolar molecular rotors in the metal-organic framework crystalIRMOF-2. Phys. Chem. Chem. Phys. 10, 5188–5191 (2008)

    Article  CAS  Google Scholar 

  40. Gould S.L., Tranchemontagne D., Yaghi O.M., Garcia-Garibay M.A.: Amphidynamic character of crystalline MOF-5: Rotational dynamics of Terephthalate Phenylenes in a free volume, sterically unhindered environment. J. Am. Chem. Soc. 130, 3246–3247 (2008)

    Article  CAS  Google Scholar 

  41. Kawaguchi T., Mamada A., Hosokawa Y., Horii F.: H-2 nmr analysis of the phenylene motion in different poly(ethylene terephthalate) samples. Polymer 39, 2725–2732 (1998)

    Article  CAS  Google Scholar 

  42. Cholli A.L., Dumais J.J., Engel A.K., Jelinski L.W.: Aromatic ring flips in a semicrystalline polymer. Macromolecules 17, 2399–2404 (1984)

    Article  CAS  Google Scholar 

  43. Tafipolsky M., Amirjalayer S., Schmid R.: Ab initio parametrized MM3 force field for the metal-organic framework MOF-5. J. Comput. Chem. 28, 1169–1176 (2007)

    Article  CAS  Google Scholar 

  44. Khuong T.A.V., Zepeda G., Ruiz R., Khan S.I., Garcia-Garibay M.A.: Molecular compasses and gyroscopes: Engineering molecular crystals with fast internal rotation. Cryst. Growth Des. 4, 15–18 (2004)

    Article  CAS  Google Scholar 

  45. Ghoniem N.M., Busso E.P., Kioussis N., Huang H.: Multiscale modelling of nanomechanics and micromechanics: An overview. Philos. Mag. 83, 3475–3528 (2003)

    Article  CAS  Google Scholar 

  46. Miguel A.G., Carlos E.G.: Engineering crystal packing and internal dynamics in molecular gyroscopes by refining their components Fast exchange of a Phenylene rotator by NMR. Cryst. Growth Des 9, 3124– (2009)

    Article  Google Scholar 

  47. Liang Y., Hilal N., Langston P., Starov V.: Interaction forces between colloidal particles in liquid: Theory and experiment. Adv. Colloid Interface Sci. 134(135), 151–166 (2007)

    Article  Google Scholar 

  48. Cox B.J., Thamwattana N., Hill J.M.: Mechanics of atoms and fullerenes in single-walled carbon nanotubes I Acceptance and suction energies. Proc. R. Soc. London, Ser. A 463, 461 (2007)

    Article  CAS  Google Scholar 

  49. Cox B.J., Thamwattana N., Hill J.M.: Mechanics of atoms and fullerenes in single-walled carbon nanotubesII Oscillatory behaviour. Proc. R. Soc. London, Ser. A 463, 477 (2007)

    Article  CAS  Google Scholar 

  50. Maitland G.C., Rigby M., Smith E.B., Wakeham W.A.: forces-Their origin and determination. Clarendon Press, Oxford (1981)

    Google Scholar 

  51. Fu D.W., Ye H.Y., Ye Q., Pan K.J., Xiong R.G.: Ferroelectric metal-organic coordination polymer with a high dielectric constant. Dalton 7, 874–877 (2007)

    Google Scholar 

  52. Ye Q., Song Y.M., Wang G.X., Chen K., Fu D.W., Chan P.W.H., ZhuJ.S. Huang S.D., Xiong R.G.: Ferroelectric metal-organic framework with a high dielectric constant. J. Am. Chem. Soc. 128, 6554–6555 (2006)

    Article  CAS  Google Scholar 

  53. Tersoff J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)

    Article  Google Scholar 

  54. Israelachvili J.: Intermolecular and surface forces. Academic Press, London (1992)

    Google Scholar 

  55. Kramers H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)

    Article  CAS  Google Scholar 

  56. Landauer R., Swanson J.A.: Frequency factors in the thermally activated process. Phys. Rev. 121, 1668–1674 (1961)

    Article  Google Scholar 

  57. Maruyama S., Kimura T. Molecular dynamics simulation of hydrogen storage in single-walled carbon nanotubes. 2000 ASME International Mechanical Engineering Congress and Exhibit November 5–11:1–5, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, Y., Hill, J.M. Dynamics of benzene molecules situated in metal-organic frameworks. J Math Chem 49, 2190–2209 (2011). https://doi.org/10.1007/s10910-011-9880-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9880-x

Keywords

Navigation