Skip to main content
Log in

An explicit four-step method with vanished phase-lag and its first and second derivatives

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we will develop an explicit fourth algebraic order four-step method with phase-lag and its first and second derivatives vanished. The comparative error and the stability analysis of the above mentioned paper is also presented. The new obtained method is applied on the resonance problem of the Schrödinger equationIn order in order to examine its efficiency. The theoretical and the computational results shown that the new obtained method is more efficient than other well known methods for the numerical solution of the Schrödinger equation and related initial-value or boundary-value problems with periodic and/or oscillating solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Where \(S\) is a set of distinct points

  2. With the term classical we mean the method of Sect. 3 with constant coefficients

  3. The reference values are computed using the well known two-step method of Chawla and Rao [28] with small step size for the integration

References

  1. J.D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem (Wiley, New York, 1991)

    Google Scholar 

  2. T.E. Simos, J. Vigo-Aguiar, A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  3. K. Tselios, T.E. Simos, Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  4. Z.A. Anastassi, T.E. Simos, An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  5. D.F. Papadopoulos, T.E. Simos, A new methodology for the construction of optimized Runge-Kutta-Nyström methods. Int. J. Modern Phys. C 22(6), 623–634 (2011)

    Article  Google Scholar 

  6. Dimitris F. Papadopoulos, T.E. Simos, A modified Runge-Kutta-Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)

    Article  Google Scholar 

  7. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge-Kutta-Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  8. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  9. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  10. T.E. Simos, A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919–931 (2001)

    Article  Google Scholar 

  11. T.E. Simos, Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Article  Google Scholar 

  12. Ch. Tsitouras, T.E. Simos, Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  13. Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  14. Z.A. Anastassi, T.E. Simos, A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  15. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  16. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  17. J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30(1), 1–10 (1990)

    Article  Google Scholar 

  18. E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  Google Scholar 

  19. T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1997)

    Article  CAS  Google Scholar 

  20. Ch. Tsitouras, ITh Famelis, On modified Runge-Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  21. http://www.burtleburtle.net/bob/math/multistep.html

  22. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  Google Scholar 

  23. A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  24. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  25. T.E. Simos, P.S. Williams, A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  26. R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)

    Article  Google Scholar 

  27. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  28. M.M. Chawla, P.S. Rao, An explicit sixth - order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  29. M.M. Chawla, P.S. Rao, An Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  30. T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  31. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  32. T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  33. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  34. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second order IVPS with oscillating solutions. Numer. Algorithm. 34(1), 27–40 (2003)

    Article  Google Scholar 

  35. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  36. Theodore E. Simos, Optimizing a class of linear multi-step methods for the approximate solution of the radial Schrödinger equation and related problems with respect to phase-lag. Central Eur. J. Phys. 9(6), 1518–1535 (2011)

    Article  Google Scholar 

  37. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  38. Hans Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 209(1), 33–53 (2007)

    Article  Google Scholar 

  39. Hans Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53, 1339–1348 (2007)

    Article  Google Scholar 

  40. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  41. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step p-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  42. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. Int. J. Modern Phys. C 22(2), 133–153 (2011)

    Article  Google Scholar 

  43. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions. Comput. Phys. Commun. 182(8), 1626–1637 (2011)

    Article  CAS  Google Scholar 

  44. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. Article ID 420387, Volume 2012 (2012)

  45. T.E. Simos, A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 49(10), 2486–2518 (2011)

    Article  CAS  Google Scholar 

  46. Ibraheem Alolyan, T.E. Simos, A new four-step Runge-Kutta type method with vanished phase-lag and its first, second and third derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 51(5), 1418–1445 (2013)

    Article  CAS  Google Scholar 

  47. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor-corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)

    Article  Google Scholar 

  48. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new eight-step symmetric embedded predictor-corrector method (EPCM) for orbital problems and related IVPs with oscillatory solutions. Astron. J. 145(3), 75 (2013). doi:10.1088/0004-6256/145/3/75

  49. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)

    Article  CAS  Google Scholar 

  50. T.E. Simos, On the Explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)

    Article  Google Scholar 

  51. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor-corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)

    Article  Google Scholar 

  52. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  53. K. Tselios, T.E. Simos, Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  54. K. Tselios, T.E. Simos, Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  55. T. Monovasilis, T.E. Simos, New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  56. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  57. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  58. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  59. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  60. Z. Kalogiratou, T.E. Simos, Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  61. T.E. Simos, High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  62. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  63. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  64. T.E. Simos, High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)

    Article  CAS  Google Scholar 

  65. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

    Article  Google Scholar 

  66. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. RevMexAA 42(2), 167–177 (2006)

    Google Scholar 

  67. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Mod. Phys C 14(8), 1061–1074 (2003)

    Article  Google Scholar 

  68. T.E. Simos, New closed Newton-Cotes type formulae as multilayer symplectic integrators. J. Chem. Phys. 133(10), 104108 (2010)

    Google Scholar 

  69. T.E. Simos, New stable closed newton-cotes trigonometrically fitted formulae for long-time integration, abstract and applied analysis. Article Number: 182536 (2012). doi:10.1155/2012/182536.

  70. T.E. Simos, High order closed Newton-Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem 50(5), 1224–1261 (2012)

    Article  CAS  Google Scholar 

  71. T.E. Simos, Accurately closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Int. J. Modern Phys. C 24(3), 1350014-1–1350014-20 (2013)

    Google Scholar 

  72. T.E. Simos, New open modified Newton Cotes type formulae as multilayer symplectic integrators. Appl. Math. Model. 37(4), 1983–1991 (2013)

    Article  Google Scholar 

  73. G.Vanden Berghe, M. Van Daele, Exponentially fitted open NewtonCotes differential methods as multilayer symplectic integrators. J. Chem. Phys. 132, 204107 (2010)

    Google Scholar 

  74. Z. Kalogiratou, T. Monovasilis, T.E. Simos, A fifth-order symplectic trigonometrically fitted partitioned Runge-Kutta method, international conference on numerical analysis and applied mathematics, SEP 16–20, 2007 Corfu. GREECE Numer. Anal. Appl. Math. AIP Conf. Proc. 936, 313–317 (2007)

    Article  Google Scholar 

  75. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757–763 (2007)

    Article  CAS  Google Scholar 

  76. T. Monovasilis, T.E. Simos, Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

    Article  CAS  Google Scholar 

  77. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods. Phys. Lett. A 372(5), 569–573 (2008)

    Article  CAS  Google Scholar 

  78. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge-Kutta-Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  79. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Two new phase-fitted symplectic partitioned Runge-Kutta methods. Int. J. Modern Phys. C 22(12), 1343–1355 (2011)

    Article  Google Scholar 

  80. Kostas Tselios, T.E. Simos, Optimized fifth order symplectic integrators for orbital problems. Revista Mexicana de Astronomia y Astrofisica 49(1), 11–24 (2013)

    Google Scholar 

  81. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Symplectic partitioned Runge-Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

    Article  CAS  Google Scholar 

  82. T.E. Simos, Jesus Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 152, 274–294 (2003)

    Article  CAS  Google Scholar 

  83. T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Num. Math. 19, 65–75 (1972)

    Article  Google Scholar 

  84. L.Gr Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  85. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  86. J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  87. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  88. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  89. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  90. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  91. G. Avdelas, E. Kefalidis, T.E. Simos, New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  92. T.E. Simos, A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  93. T.E. Simos, Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  94. T.E. Simos, A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem 40(3), 305–318 (2006)

    Article  CAS  Google Scholar 

  95. Hans Van de Vyver, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

    Article  Google Scholar 

  96. T.E. Simos, A family of four-step trigonometrically-fitted methods and its application to the Schrodinger equation. J. Math. Chem 44(2), 447–466 (2009)

    Article  CAS  Google Scholar 

  97. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  98. G. Psihoyios, T.E. Simos, Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  99. G. Psihoyios, T.E. Simos, The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem 40(3), 269–293 (2006)

    Article  CAS  Google Scholar 

  100. Zhongcheng Wang, P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)

    Article  CAS  Google Scholar 

  101. T.E. Simos, A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  102. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  103. Chen Tang, Wenping Wang, Haiqing Yan, Zhanqing Chen, High-order predictor-corrector of exponential fitting for the N-body problems. J. Comput. Phys. 214(2), 505–520 (2006)

    Article  CAS  Google Scholar 

  104. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  105. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  106. S. Stavroyiannis, T.E. Simos, A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362–1368 (2010)

    Article  CAS  Google Scholar 

  107. Z.A. Anastassi, T.E. Simos, Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. 482, 1–240 (2009)

    Article  CAS  Google Scholar 

  108. R. Vujasin, M. Sencanski, J. Radic-Peric, M. Peric, A comparison of various variational approaches for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput. Chem. 63(2), 363–378 (2010)

    CAS  Google Scholar 

  109. T.E. Simos, P.S. Williams, On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  110. L.Gr Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  111. J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  112. T.E. Simos, G. Psihoyios, Special issue: the international conference on computational methods in sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165–165 (2006)

    Article  Google Scholar 

  113. T.E. Simos, G. Psihoyios, Special issue—Selected papers of the International Conference on Computational Methods in Sciences and Engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September 2003 —Preface, J. Comput. Appl. Math. 175(1) IX–IX (2005)

  114. T.E. Simos, J. Vigo-Aguiar, Special Issue—Selected Papers from the Conference on Computational and Mathematical Methods for Science and Engineering (CMMSE-2002)—Alicante University, Spain, 20–25 September 2002—Preface, J. Comput. Appl. Math. 158(1) IX–IX (2003)

  115. T.E. Simos, Ch. Tsitouras and I. Gutman, Preface for the Special Issue Numerical Methods in Chemistry, MATCH Commun. Math. Comput. Chem 60(3) (2008)

  116. T.E. Simos, I. Gutman, Papers presented on the International Conference on Computational Methods in Sciences and Engineering (Castoria, Greece, September 12–16, 2003). MATCH Commun. Math. Comput. Chem 53(2), A3–A4 (2005)

  117. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  118. J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  119. T.E. Simos, G. Psihoyios, J. Comput. Appl. Math. 175(1), IX–IX (2005)

    Google Scholar 

  120. L.D. Landau, F.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965)

  121. I. Prigogine, S. Rice (eds.), Advances in Chemical Physics, Vol. 93: New Methods in Computational Quantum Mechanics (Wiley, New York, 1997)

  122. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, Toronto, 1950)

  123. L. Gr Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

T. E. Simos is an Highly Cited Researcher (http://isihighlycited.com/), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding Member of European Academy of Arts, Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simos, T.E. An explicit four-step method with vanished phase-lag and its first and second derivatives. J Math Chem 52, 833–855 (2014). https://doi.org/10.1007/s10910-013-0296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0296-7

Keywords

Navigation