Skip to main content
Log in

Secondary structure elements in polylactic acid models

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Geometry optimization results are reported on putative elements of secondary structure in decameric units of polylactic acid (PLA) analogous to those seen in protein structure—helical structures (α, π, 310) as well as a β-sheet—employing molecular mechanics, semiempirical, ab initio and density functional methods. The four possible structures of the deca-PLA are generally predicted, with all methods to be within ~15 kcal/mol of each other, with the more stable conformation varying depending on the method employed. The highest-level method employed here (M062x/6-311+G**) predicts that the α, π and 310 structures have very similar energies, with π slightly favored by values within the error limits of the method; this is in contrast with results obtained with less accurate semiempirical and empirical methods, which predict larger differences and other structures as favorites. Relative energies of poly-l and poly-d,l lactic acid structures indicate the former to be energetically-favored over the latter. Three types of weak interactions appear to dictate the relative stabilities of secondary structure elements in polylactic acid structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu Y., Jiang X., Ding Y., Zhang L., Yang C., Zhang J.: Biomaterials 24, 2395 (2003)

    Article  CAS  Google Scholar 

  2. Ouchi T., Saito T., Kontani T., Ohya Y.: Macromol. Biosci. 4, 458 (2004)

    Article  CAS  Google Scholar 

  3. Baseir M.E.I., Kellaway I.W.: Int. J. Pharmacol. 175, 135 (1998)

    Article  Google Scholar 

  4. Chandy T., Das G.S., Wilson R.F., Rao G.H.R.: J. Appl. Polym. Sci. 86, 1285 (2002)

    Article  CAS  Google Scholar 

  5. Viinikainen A., Goransson H., Huovinen K., Kellomaki M., Tormala P., Rokkanen P.: J. Mater. Sci. Mater. Med. 17, 169 (2006)

    Article  CAS  Google Scholar 

  6. Miyata T., Masuko T.: Polymer 38, 4003 (1997)

    Article  CAS  Google Scholar 

  7. Kobayashi J., Asahi T., Ichiki M., Okikawa A., Suzuki H., Watanabe T., Fukada E., Shikinami Y.: J. Appl. Phys. 77, 2957 (1995)

    Article  CAS  Google Scholar 

  8. Hoogsteen W., Postema A.R., Pennings A.J., ten Brinke G.G., Zugenmaier P.: Macromolecules 23, 634 (1990)

    Article  CAS  Google Scholar 

  9. Sasaki S., Asakura T.: Macromolecules 36, 8385 (2003)

    Article  CAS  Google Scholar 

  10. Brizzolara D., Cantow H.J., Diederichs K., Keller E., Domb A.J.: Macromolecules 29, 191 (1996)

    Article  CAS  Google Scholar 

  11. Aleman C., Lotz B., Puiggali J.: Macromolecules 34, 4795 (2001)

    Article  CAS  Google Scholar 

  12. De Santis P., Kovacs J.: Biopolymers 6, 299 (1968)

    Article  CAS  Google Scholar 

  13. Puiggali J., Ikada Y., Tsuji H., Cartier L., Okihara T., Lotz B.: Polymer 41, 8921 (2000)

    Article  CAS  Google Scholar 

  14. Okihara T., Tsuji M., Kawagushi A., Katayama K.I., Tsuji H., Hyon S.H., Ikada Y.: J. Macromol. Sci. Phys. B 30, 119 (1991)

    Article  CAS  Google Scholar 

  15. Cartier L., Okihara T., Ikada Y., Tsuji H., Puiggali J., Lotz B.: Polymer 41, 8909 (2000)

    Article  CAS  Google Scholar 

  16. Ikada Y., Jamshidi K., Tsuji H., Hyon S.H.: Macromolecules 20, 904 (1987)

    Article  CAS  Google Scholar 

  17. Tsuji H.: Macromol. Biosci. 5, 569 (2005)

    Article  CAS  Google Scholar 

  18. Tsuji H., Ikada Y.: Polymer 40, 6699 (1999)

    Article  CAS  Google Scholar 

  19. Tsuji H., Fukui I.: Polymer 44, 2891 (2003)

    Article  CAS  Google Scholar 

  20. Sawai D., Tsugane Y., Tamada M., Kanamoto T., Sungil M., Hyon S.H.: J. Polym. Sci. Part B Polym. Phys. 45, 2632 (2007)

    Article  CAS  Google Scholar 

  21. Rahman N., Kawai T., Matsuba G., Nishida K., Kanaya T., Watanabe H., Okamoto H., Kato M., Usuki A., Matsuda M., Nakajima K., Honma N.: Macromolecules 42, 4739 (2009)

    Article  CAS  Google Scholar 

  22. Zhang J., Tashiro K., Tsuji H., Domb A.J.: Macromolecules 40, 1049 (2007)

    Article  CAS  Google Scholar 

  23. Kang S., Hsu S.L., Stidham H.D., Smith B.P., Leugers A., Yang X.: Macromolecules 34, 4542 (2001)

    Article  CAS  Google Scholar 

  24. Aou K., Hsu S.L.: Macromolecules 39, 3337 (2006)

    Article  CAS  Google Scholar 

  25. Blomqvist J., Pietila L.O.: B. Mannfors Polym. 42, 109 (2001)

    CAS  Google Scholar 

  26. Blomqvist J.: Polymer 42, 3515 (2001)

    Article  CAS  Google Scholar 

  27. Lin T.T., Liu X.Y., He C.: J. Phys. Chem. B 114, 3133 (2010)

    Article  CAS  Google Scholar 

  28. Lin T.T., Liu X.Y., He C.: Polymer 51, 2779 (2010)

    Article  CAS  Google Scholar 

  29. Sarasua J.R., Rodriguez N.L., Arraiza A.L., Meaurio E.: Macromolecules 38, 8362 (2005)

    Article  CAS  Google Scholar 

  30. Noodleman L., Lovell T., Han W.G., Li J., Himo F.: Chem. Rev. 104, 459 (2004)

    Article  CAS  Google Scholar 

  31. Siegbahn P.E., Blomberg M.R.A.: Chem. Rev. 100, 421 (2000)

    Article  CAS  Google Scholar 

  32. Friesner R.A., Dunietz B.D.: Acc. Chem. Res. 34, 351 (2001)

    Article  CAS  Google Scholar 

  33. Gooding S.R., Winn P.J., Jones G.A., Ferenczy G.G., Frusher M.J., Reynolds C.A.: J. Phys. Chem. A. 110, 6487 (2006)

    Article  Google Scholar 

  34. Warshel A., Parson W.W.: Q. Rev. Biophys. 34, 563 (2001)

    Article  CAS  Google Scholar 

  35. Warshel A.: Acc. Chem. Res. 35, 385 (2002)

    Article  CAS  Google Scholar 

  36. Rosta E., Klahn M., Warshel A.: J. Phys. Chem. B 110, 2934 (2006)

    Article  CAS  Google Scholar 

  37. HyperChem(TM) Molecular modelling system, release 4.5 SGI, Hypercube; Hyperchem(TM) molecular modelling system, Release 5.01 for Windows, Hypercube, Inc. (1998)

  38. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery, A.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 09, Gaussian, Inc., Wallingford, CT (2009)

  39. J.J.P. Stewart, MOPAC 2009, Stewart Computational Chemistry, Version 10.153L (2009)

  40. Eckert F., Klamt A.: AIChE J. 48, 369 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Silaghi-Dumitrescu.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irsai, I., Majdik, C., Lupan, A. et al. Secondary structure elements in polylactic acid models. J Math Chem 50, 703–733 (2012). https://doi.org/10.1007/s10910-011-9919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9919-z

Keywords

Navigation