Skip to main content
Log in

On the Applicability of Mathematical Constants and Sequences in Intermolecular Potential Energy Functions

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Six intermolecular potential energy functions incorporating mathematical functions such as the Golden ratio, Euler number and Pi, and three consecutive numbers in the Half Square, Lucas and Fibonacci sequences are proposed herein. It is shown that the Lucas potential function exhibits reasonable agreement with the Lennard-Jones(12-10) function, whilst the Golden ratio potential function describes the argon gas potential energy and the Lennard-Jones(14-7) function excellently. Both the Euler and Pi potential functions agree well with the Lennard-Jones(12-6) function, whilst the Fibonacci potential function exhibits very good correlation with the Lennard-Jones(9-6) function. The relatedness of the mathematical constants and sequences examined in this paper with application to intermolecular potential functions suggests their additional significance in the field of chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim T.C. (2004). MATCH Commun. Math. Comput. Chem 50:185

    MathSciNet  CAS  Google Scholar 

  2. Lim T.C. (2004). J. Math. Chem 36:261

    Article  MathSciNet  CAS  Google Scholar 

  3. Lim T.C. (2004). Z. Naturforsch A 59:116

    CAS  Google Scholar 

  4. Lim T.C. (2004). Czech. J. Phys 54:553

    Article  Google Scholar 

  5. Lim T.C. (2004). Czech. J. Phys 54:947

    Article  CAS  Google Scholar 

  6. Lim T.C. (2004). Chin. Phys. Lett 21:2167

    Article  CAS  Google Scholar 

  7. Lim T.C. (2004). Phys. Scripta 70:347

    Article  CAS  Google Scholar 

  8. Lim T.C. (2005). Chin. J. Phys 43:43

    CAS  Google Scholar 

  9. Lim T.C. (2005). Braz. J. Phys 35:641

    Article  CAS  Google Scholar 

  10. Lim T.C. (2005). MATCH Commun. Math. Comput. Chem 54:29

    CAS  Google Scholar 

  11. Lim T.C. (2004). J. Math. Chem 36:139

    Article  MathSciNet  CAS  Google Scholar 

  12. Lim T.C. (2004). J. Math. Chem 36:147

    Article  MathSciNet  CAS  Google Scholar 

  13. Lim T.C. (2005). J. Math. Chem. 38:195

    Article  MathSciNet  CAS  Google Scholar 

  14. Lim T.C. (2005). J. Math. Chem 38:495

    Article  CAS  Google Scholar 

  15. Lim T.C. (2005). Acta Chim. Slov 52:149

    CAS  Google Scholar 

  16. Lim T.C. (2005). Chem. Phys 320:54

    Article  CAS  Google Scholar 

  17. Lennard-Jones J.E. (1924). Proc. Roy. Soc. Lond. A 106:463

    Google Scholar 

  18. Mecke R. (1927). Z. Phys 42:390

    Article  CAS  Google Scholar 

  19. Sutherland G.B.B.M. (1938). Proc. Indian Acad. Sci 8:341

    Google Scholar 

  20. Morse P.M. (1929). Phys. Rev 34:57

    Article  CAS  Google Scholar 

  21. Buckingham R.A. (1938). Proc. Roy. Soc. Lond. A 168:264

    Article  CAS  Google Scholar 

  22. Wu C.K., and Yang C.T. (1944). J. Phys. Chem 48:295

    Article  CAS  Google Scholar 

  23. Linnett J.W. (1940). Trans Faraday Soc 36:1123

    Article  CAS  Google Scholar 

  24. Linnett J.W. (1942). Trans. Faraday Soc. 38:1

    Article  CAS  Google Scholar 

  25. Damm W., Frontera A., Tirado-Rives J. and Jorgensen W.L. (1997). J. Comput. Chem 18:1955

    Article  CAS  Google Scholar 

  26. Rappe A.K., Casewit C.J., Colwell K.S., Goddard W.A. III and Skiff W.M. (1992). J. Am. Chem. Soc 114:10024

    Article  CAS  Google Scholar 

  27. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M. Jr, Ferguson G.M., Spellmeyer D.C., Fox T., Caldwell J.W., and Collman P.A. (1995). J. Am. Chem. Soc 117:5179

    Article  CAS  Google Scholar 

  28. Nemethy G., Gibsen K.D., Palmer K.A., Yoon C.N., Paterlini G., Zagari A., Rumsey S., and Sheraga H.A. (1992). J. Phys. Chem 96:6472

    Article  CAS  Google Scholar 

  29. Barlow S., Rohl A.A., Shi S., Freeman C.M., and O’Hare D. (1996). J. Am. Chem. Soc 118:7578

    Article  CAS  Google Scholar 

  30. Hwang M.J., Stockfisch T.P., and Hagler A.T. (1994). J. Am. Chem. Soc. 116:2515

    Article  CAS  Google Scholar 

  31. Halgren T.A. (1996). J. Comput. Chem 17:490

    Article  CAS  Google Scholar 

  32. Mayo S.L., Olafson B.D., and Goddard W.A. III (1990). J. Phys. Chem 94:8897

    Article  CAS  Google Scholar 

  33. Karasawa N., Dasgupta S., and Goddard W.A. III (1991). J. Phys. Chem 95:2260

    Article  CAS  Google Scholar 

  34. Fan C.F., Cagin T., Chen Z.M., and Smith K.A. (1994). Macromolecules 27:2383

    Article  CAS  Google Scholar 

  35. Lim T.C. (2006). Chin. J. Phys 44:19

    Google Scholar 

  36. Aziz R.A., and Chen H.H. (1977). J. Chem. Phys 67:5719

    Article  CAS  Google Scholar 

  37. Maitland G.C., Rigby M., Smith E.B., and Wakeham W.A. (1981). Intermolecular Forces. Clarendon Press, Oxford, p. 581

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, TC. On the Applicability of Mathematical Constants and Sequences in Intermolecular Potential Energy Functions. J Math Chem 41, 381–391 (2007). https://doi.org/10.1007/s10910-006-9084-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9084-y

Keywords

AMS subject classification

Navigation