Skip to main content
Log in

Single-Photon Source with Emission Direction Controlled by a Qubit State

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We propose an experimentally feasible scheme for a source of itinerant microwave photons. It also features a quantum router that controls the direction of quantum microwave signals. This scheme consists of two superconducting qubits coupled to the transmission line in different regimes (strong and dispersive coupling). The dispersive coupling induces a shift in the resonance frequencies of coupled resonators, which depend on the dispersively coupled qubit state. We use this qubit to switch the direction of photon emission so that one output channel is blocked and the other is open, and vice versa, by changing the qubit state. We tune the bare frequencies of resonators and other system parameters to obtain a high efficient routing of photons. To demonstrate it, we implement a theoretical model of the proposed scheme and use the Jaynes–Cummings approach to describe the photon-matter interaction. We formulate a time-dependent wave function to study the behaviour of the proposed system. We derive and numerically solve a set of equations of motion governing the evolution of a single-photon wave packet. As a result, it is shown that the quantum signal can be routed in one of the two channels with high efficiency—nearly 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Blais, J. Gambetta, A. Wallraff, D.I. Schuster, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007). https://doi.org/10.1103/PhysRevA.75.032329

    Article  ADS  Google Scholar 

  2. G. Wendin, Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80(10), 106001 (2017). https://doi.org/10.1088/1361-6633/aa7e1a

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Houck, D. Schuster, J. Gambetta, J. Schreier, B. Johnson, J. Chow, L. Frunzio, J. Majer, M. Devoret, S. Girvin, R. Schoelkopf, Generating single microwave photons in a circuit. Nature 449, 328–31 (2007). https://doi.org/10.1038/nature06126

    Article  ADS  Google Scholar 

  4. J. Gambetta, A. Blais, M. Boissonneault, A.A. Houck, D.I. Schuster, S.M. Girvin, Quantum trajectory approach to circuit qed: quantum jumps and the zeno effect. Phys. Rev. A (2008). https://doi.org/10.1103/physreva.77.012112

    Article  Google Scholar 

  5. A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004). https://doi.org/10.1103/PhysRevA.69.062320

    Article  ADS  Google Scholar 

  6. X. Gu, A.F. Kockum, A. Miranowicz, Y.-X. Liu, F. Nori, Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017). https://doi.org/10.1016/j.physrep.2017.10.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Eisaman, J. Fan, A. Migdall, S. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011). https://doi.org/10.1063/1.3610677

    Article  ADS  Google Scholar 

  8. K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, Y. Arakawa, Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015). https://doi.org/10.1038/srep14383

    Article  ADS  Google Scholar 

  9. X. Cao, M. Zopf, F. Ding, Telecom wavelength single photon sources. J. Semicond. 40(7), 071901 (2019). https://doi.org/10.1088/1674-4926/40/7/071901

    Article  ADS  Google Scholar 

  10. J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R.J. Warburton, P. Treutlein, Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017). https://doi.org/10.1103/PhysRevLett.119.060502

    Article  ADS  Google Scholar 

  11. M. Helversen, J. Böhm, M. Schmidt, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, J. Beyer, T. Heindel, S. Reitzenstein, Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors. New J. Phys. (2019). https://doi.org/10.1088/1367-2630/ab0609

    Article  Google Scholar 

  12. S. Thomas, P. Senellart, The race for the ideal single-photon source is on. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-00851-1

    Article  Google Scholar 

  13. A.A. Houck, J.A. Schreier, B.R. Johnson, J.M. Chow, J. Koch, J.M. Gambetta, D.I. Schuster, L. Frunzio, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Controlling the spontaneous emission of a superconducting transmon qubit. Phys. Rev. Lett. 101, 080502 (2008). https://doi.org/10.1103/PhysRevLett.101.080502

    Article  ADS  Google Scholar 

  14. W.F. Kindel, M.D. Schroer, K.W. Lehnert, Generation and efficient measurement of single photons from fixed-frequency superconducting qubits. Phys. Rev. A (2016). https://doi.org/10.1103/physreva.93.033817

    Article  Google Scholar 

  15. Z. Peng, S. de Graaf, J. Tsai, O. Astafiev, Tuneable on-demand single-photon source in the microwave range. Nat. Commun. 7(12588), 1 (2016). https://doi.org/10.1038/ncomms12588

    Article  Google Scholar 

  16. P. Forn-Díaz, C.W. Warren, C.W.S. Chang, A.M. Vadiraj, C.M. Wilson, On-demand microwave generator of shaped single photons. Phys. Rev. Appl. 8, 054015 (2017). https://doi.org/10.1103/PhysRevApplied.8.054015

    Article  ADS  Google Scholar 

  17. J. Peng, J. Tang, P. Tang, Z. Ren, J. Tian, N. Barraza, G.A. Barrios, L. Lamata, E. Solano, F. Albarran-Arriagada, Deterministic single-photon source in the ultrastrong coupling regime. arXiv (2022). https://doi.org/10.48550/ARXIV.2211.06334. https://arxiv.org/abs/2211.06334

  18. A.M. Sokolov, E.V. Stolyarov, Single-photon limit of dispersive readout of a qubit with a photodetector. Phys. Rev. A. 101, 042306 (2020)

    Article  ADS  Google Scholar 

  19. K. Lemr, K. Bartkiewicz, A. Černoch, J. Soubusta, Resource-efficient linear-optical quantum router. Phys. Rev. A (2013). https://doi.org/10.1103/physreva.87.062333

    Article  Google Scholar 

  20. X.X. Yuan, J.-J. Ma, P.-Y. Hou, X.-Y. Chang, C. Zu, L.-M. Duan, Experimental demonstration of a quantum router. Sci. Rep. (2015). https://doi.org/10.1038/srep12452

    Article  Google Scholar 

  21. L. Zhou, L.-P. Yang, Y. Li, C.P. Sun, Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013). https://doi.org/10.1103/PhysRevLett.111.103604

    Article  ADS  Google Scholar 

  22. J. Lu, L. Zhou, L.-M. Kuang, F. Nori, Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014). https://doi.org/10.1103/PhysRevA.89.013805

    Article  ADS  Google Scholar 

  23. M. Ahumada, P.A. Orellana, F. Domínguez-Adame, A.V. Malyshev, Tunable single-photon quantum router. Phys. Rev. A (2019). https://doi.org/10.1103/physreva.99.033827

    Article  Google Scholar 

  24. Y. Zhu, W. Jia, Single-photon quantum router in the microwave regime utilizing double superconducting resonators with tunable coupling. Phys. Rev. A (2019). https://doi.org/10.1103/PhysRevA.99.063815

    Article  Google Scholar 

  25. Y..-l Ren, S..-l Ma, J..-K. Xie, X..-K. Li, M..-T. Cao, F..-l Li, Nonreciprocal single-photon quantum router. Phys. Rev. A 105, 013711 (2022). https://doi.org/10.1103/PhysRevA.105.013711

    Article  ADS  Google Scholar 

  26. P. Bermel, A. Rodriguez, S.G. Johnson, J.D. Joannopoulos, M. Soljačić, Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A 74, 043818 (2006). https://doi.org/10.1103/PhysRevA.74.043818

    Article  ADS  Google Scholar 

  27. L. Zhou, Z.R. Gong, Y.-X. Liu, C.P. Sun, F. Nori, Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008). https://doi.org/10.1103/PhysRevLett.101.100501

    Article  ADS  Google Scholar 

  28. J.-Q. Liao, J.-F. Huang, Y.-X. Liu, L.-M. Kuang, C. Sun, Quantum switch for single-photon transport in a coupled superconducting transmission line resonator array. Phys. Rev. A (2009). https://doi.org/10.1103/PhysRevA.80.014301

    Article  Google Scholar 

  29. L. Zhou, S. Yang, Y.-X. Liu, C.P. Sun, F. Nori, Quantum zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009). https://doi.org/10.1103/PhysRevA.80.062109

    Article  ADS  Google Scholar 

  30. J. Li, G.S. Paraoanu, K. Cicak, F. Altomare, J. Park, R. Simmonds, M. Sillanpaa, P. Hakonen, Dynamical autler-townes control of a phase qubit (2) (2012). https://doi.org/10.1038/srep00645

  31. S. Baur, D. Tiarks, G. Rempe, S. Dürr, Single-photon switch based on rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014). https://doi.org/10.1103/PhysRevLett.112.073901

    Article  ADS  Google Scholar 

  32. E.V. Stolyarov, Single-photon switch controlled by a qubit embedded in an engineered electromagnetic environment. Phys. Rev. A 102, 063709 (2020). https://doi.org/10.1103/PhysRevA.102.063709

    Article  ADS  MathSciNet  Google Scholar 

  33. F. Bloch, A. Siegert, Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522–527 (1940). https://doi.org/10.1103/PhysRev.57.522

    Article  ADS  Google Scholar 

  34. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007). https://doi.org/10.1103/PhysRevA.76.042319

    Article  ADS  Google Scholar 

  35. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser 51(1), 89–109 (1963). https://doi.org/10.1109/PROC.1963.1664

  36. M. Boissonneault, J.M. Gambetta, A. Blais, Dispersive regime of circuit qed: photon-dependent qubit dephasing and relaxation rates. Phys. Rev. A 79, 013819 (2009). https://doi.org/10.1103/PhysRevA.79.013819

    Article  ADS  Google Scholar 

  37. E.V. Stolyarov, Few-photon fock-state wave packet interacting with a cavity-atom system in a waveguide: exact quantum state dynamics. Phys. Rev. A 99, 023857 (2019). https://doi.org/10.1103/PhysRevA.99.023857

    Article  ADS  Google Scholar 

  38. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162–167 (2004). https://doi.org/10.1038/nature02851

    Article  ADS  Google Scholar 

  39. J. Majer, J. Chow, J. Gambetta, J. Koch, B. Johnson, J. Schreier, L. Frunzio, D. Schuster, A. Houck, A. Wallraff, A. Blais, M. Devoret, S. Girvin, R. Schoelkopf, Coupling superconducting qubits via a cavity bus. Nature 449, 443–7 (2007). https://doi.org/10.1038/nature06184

    Article  ADS  Google Scholar 

  40. B. Johnson, M. Reed, A. Houck, D. Schuster, L. Bishop, E. Ginossar, J. Gambetta, L. DiCarlo, L. Frunzio, S. Girvin, R. Schoelkopf, Quantum non-demolition detection of single microwave photons in a circuit. Nat. Phys. (2010). https://doi.org/10.1038/nphys1710

    Article  Google Scholar 

  41. M.D. Reed, B.R. Johnson, A.A. Houck, L. DiCarlo, J.M. Chow, D.I. Schuster, L. Frunzio, R.J. Schoelkopf, Fast reset and suppressing spontaneous emission of a superconducting qubit. Appl. Phys. Lett. 96(20), 203110 (2010). https://doi.org/10.1063/1.3435463

    Article  ADS  Google Scholar 

  42. E.A. Sete, J.M. Martinis, A.N. Korotkov, Quantum theory of a bandpass purcell filter for qubit readout. Phys. Rev. A (2015). https://doi.org/10.1103/physreva.92.012325

    Article  Google Scholar 

  43. E.M. Purcell, H.C. Torrey, R.V. Pound, Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946). https://doi.org/10.1103/PhysRev.69.37

    Article  ADS  Google Scholar 

  44. P. Krantz, M. Kjaergaard, F. Yan, T.P. Orlando, S. Gustavsson, W.D. Oliver, A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6(2), 021318 (2019). https://doi.org/10.1063/1.5089550

    Article  ADS  Google Scholar 

  45. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997)

    Book  Google Scholar 

  46. T. Roth, R. Ma, W.C. Chew, The transmon qubit for electromagnetics engineers: an introduction. IEEE Antennas Propag. Mag. (2022). https://doi.org/10.1109/MAP.2022.3176593

    Article  Google Scholar 

  47. C. Wang, X. Li, H. Xu, Z. Li, J. Wang, Z. Yang, Z. Mi, X. Liang, T. Su, C. Yang, G. Wang, W. Wang, Y. Li, M. Chen, C. Li, K. Linghu, J. Han, Y. Zhang, Y. Feng, H. Yu, Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. NPJ Quantum Inf (2022). https://doi.org/10.1038/s41534-021-00510-2

    Article  Google Scholar 

  48. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P.J.J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T.C. White, Y. Yin, J. Zhao, C.J. Palmstrøm, J.M. Martinis, A.N. Cleland, Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100(11), 113510 (2012). https://doi.org/10.1063/1.3693409

    Article  ADS  Google Scholar 

  49. C. Rigetti, J.M. Gambetta, S. Poletto, B.L.T. Plourde, J.M. Chow, A.D. Córcoles, J.A. Smolin, S.T. Merkel, J.R. Rozen, G.A. Keefe, M.B. Rothwell, M.B. Ketchen, M. Steffen, Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506 (2012). https://doi.org/10.1103/PhysRevB.86.100506

    Article  ADS  Google Scholar 

  50. M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. Pop, N. Masluk, T. Brecht, L. Frunzio, M. Devoret, L. Glazman, R. Schoelkopf, Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl. Phys. Lett. 102, 192604 (2013). https://doi.org/10.1063/1.4807015

    Article  ADS  Google Scholar 

  51. C. Axline, M. Reagor, R. Heeres, P. Reinhold, C. Wang, K. Shain, W. Pfaff, Y. Chu, L. Frunzio, R.J. Schoelkopf, An architecture for integrating planar and 3d cqed devices. Appl. Phys. Lett. 109(4), 042601 (2016). https://doi.org/10.1063/1.4959241

    Article  ADS  Google Scholar 

  52. R. Manenti, A. Frisk Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, P. Leek, Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. (2017). https://doi.org/10.1038/s41467-017-01063-9

    Article  Google Scholar 

  53. N.T. Bronn, Y. Liu, J.B. Hertzberg, A.D. Córcoles, A.A. Houck, J.M. Gambetta, J.M. Chow, Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics. Appl. Phys. Lett. 107(17), 172601 (2015). https://doi.org/10.1063/1.4934867

    Article  ADS  Google Scholar 

  54. M. Mariantoni, F. Deppe, A. Marx, R. Gross, F.K. Wilhelm, E. Solano, Two-resonator circuit quantum electrodynamics: a superconducting quantum switch. Phys. Rev. B 78, 104508 (2008). https://doi.org/10.1103/PhysRevB.78.104508

    Article  ADS  Google Scholar 

  55. J.-Q. Liao, J.-F. Huang, Y.-X. Liu, L.-M. Kuang, C.P. Sun, Quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator array. Phys. Rev. A (2009). https://doi.org/10.1103/physreva.80.014301

    Article  Google Scholar 

  56. C.W. Gardiner, M.J. Collett, Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985). https://doi.org/10.1103/PhysRevA.31.3761

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Oleksandr Chumak and Eugene Stolyarov for useful discussions. A special thanks to Eugene Stolyarov for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentyn Andriichuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Dynamics of Qubit-Open-Resonator System

Here, we present a model of a qubit and an open-resonator system interaction. This simpler model forms a base for our own. The Hamiltonian of the system, consisting of a qubit, a drain resonator, and a waveguide, is presented as follows

$$\begin{aligned} \begin{aligned} \dfrac{\hat{\mathcal {H}}_{q-r}}{\hbar }=&\omega _{q}\dfrac{\hat{\sigma }_{{z}}}{2} + \omega _{\text{r}}\hat{a}^{\dag }\hat{a}+ g(\hat{\sigma }_{+}\hat{a}+ \hat{a}^{\dag }\hat{\sigma }_{-}) + \int ^{\infty }_{-\infty }\,d\nu \,\nu \hat{b}^{\dag }_{\nu }\hat{b}_{\nu } \\&+ \sqrt{\dfrac{\kappa }{2\pi }} \int ^{\infty }_{-\infty }\,d\nu \,(\hat{a}^{\dag }\hat{b}_{\nu }+\hat{b}^{\dag }_{\nu }\hat{a}). \end{aligned} \end{aligned}$$
(A1)

The time-dependent wave function of the system has the form

$$\begin{aligned} |\psi (t)\rangle = \mathcal {Q}(t)\hat{\sigma }_{+}|\varnothing \rangle +\mathcal {A}(t)\hat{a}^{\dag }|\varnothing \rangle +\int \,d\omega \,\mathcal {B}_{\omega }(t)\hat{b}^{\dag }_{\omega }|\varnothing \rangle , \end{aligned}$$
(A2)

where \(|\varnothing \rangle =|g\rangle |0_{r}\rangle |0_{w}\rangle\) means a vacuum state of the system. It defines that there is no excitation in neither resonator \(|0_{r}\rangle\) nor waveguide \(|0_{w}\rangle\), and the qubit is in a ground state \(|g\rangle\). Thus, \(\mathcal {Q}(t)\) is the amplitude of the qubit excited-state and vacuum-state resonator \(|e\rangle |0_{r}\rangle |0_{w}\rangle =\hat{\sigma }_{+}|\varnothing \rangle\). \(\mathcal {A}(t)\) stands for the amplitude of the excitation in the resonator \(|g\rangle |1_{r}\rangle |0_{w}\rangle =\hat{a}^{\dag }|\varnothing \rangle\), so the qubit goes to the ground state \(|g\rangle\) and emits a single-photon in the resonator field \(|1_{r}\rangle\). \(\mathcal {B}_{\nu }(t)\) is a continuum of modes of the single-photon wave packet, standing for amplitudes of states \(\sum _{j}|g\rangle |0_{r}\rangle |1_{w}^{j}\rangle =\hat{b}^{\dag }_{\nu }|\varnothing \rangle\).

These amplitudes are determined through Heisenberg picture by the following expressions

$$\begin{aligned} \mathcal {Q}(t)&=\langle \varnothing |\hat{\sigma }_{-}(t)|\Psi (0)\rangle , \end{aligned}$$
(A3a)
$$\begin{aligned} \mathcal {A}(t)&=\langle \varnothing |\hat{a}(t)|\Psi (0)\rangle , \end{aligned}$$
(A3b)
$$\begin{aligned} \mathcal {B}_{\omega }(t)&=\langle \varnothing |\hat{b}_{\omega }(t)|\Psi (0)\rangle . \end{aligned}$$
(A3c)

Making use of the Heisenberg method, one can derive a set of coupled equations of motion

$$\begin{aligned}&\left( \dfrac{\partial }{\partial t}+i\omega _{r}+\dfrac{\kappa }{2}\right) \,\mathcal {A}(t)=-ig \mathcal {Q}(t), \end{aligned}$$
(A4a)
$$\begin{aligned}&\left( \dfrac{\partial }{\partial t} +i\omega _{q}\right) \,\mathcal {Q}(t)=-ig \mathcal {A}(t), \end{aligned}$$
(A4b)
$$\begin{aligned}&\left( \dfrac{\partial }{\partial t}+i\nu \right) \,\mathcal {B}_{\nu }(t)=-iU \mathcal {A}(t), \end{aligned}$$
(A4c)

where \(\kappa = 2\pi U^{2}\). The solution of the above system reads as

$$\begin{aligned} \mathcal {A}(t)&=g\dfrac{1}{\varepsilon ^{+}-\varepsilon ^{-}}\left( e^{-i(\omega _{q}-\varepsilon ^{-})t}-e^{-i(\omega _{q}-\varepsilon ^{+})t} \right) , \end{aligned}$$
(A5a)
$$\begin{aligned} \mathcal {Q}(t)&=\dfrac{\varepsilon ^{+}}{\varepsilon ^{+}-\varepsilon ^{-}}e^{-i(\omega _{q}-\varepsilon ^{-})t}-\dfrac{\varepsilon ^{-}}{\varepsilon ^{+}-\varepsilon ^{-}}e^{-i(\omega _{q}-\varepsilon ^{+})t}, \end{aligned}$$
(A5b)
$$\begin{aligned} B_{\nu }(t)&=g\sqrt{\dfrac{\kappa }{2\pi }} \left( \dfrac{1}{(\varepsilon ^{+}-\varepsilon ^{-})(\omega _{q}-\nu -\varepsilon ^{-})} e^{-i(\omega _{q}-\varepsilon ^{-})t} \right. \nonumber \\&\quad \left. -\dfrac{1}{(\varepsilon ^{+}-\varepsilon ^{-})(\omega _{q}-\nu -\varepsilon ^{+})} e^{-i(\omega _{q}-\varepsilon ^{+})t}+\dfrac{\varepsilon ^{+}\varepsilon ^{-}}{(\omega _{q}-\nu -\varepsilon ^{-})(\omega _{q}-\nu -\varepsilon ^{+})}e^{-i\nu t} \right) . \end{aligned}$$
(A5c)

The following term

$$\begin{aligned} \varepsilon ^{\pm }= \dfrac{1}{2}\left( \Delta \pm \sqrt{4g^{2}+\Delta ^{2}}\right) , \end{aligned}$$
(A6)

where \(\Delta =\omega _{q}-\left( \omega _{r}-i\kappa /2\right)\), corresponds to the complex single-excitation resonances of the qubit open-resonator system.

Appendix B Derivation of the Hamiltonian (12)

In this appendix, the effective Hamiltonian (12) is obtained by the Hadamard formula

$$\begin{aligned} e^{\lambda A}B e^{-\lambda A}=B+\lambda [A,B]+\dfrac{\lambda ^{2}}{2!}[A,[A,B]]+... \end{aligned}$$
(B7)

In terms of Eq. (10) and Eq. (11), this relation to the second order of \(\lambda\) takes the form

$$\begin{aligned} \sum _{{j}=1,2}e^{\lambda _{{j}} \hat{X}}\hat{\mathcal {H}}e^{-\lambda _{{j}} \hat{X}}=\sum _{{j}=1,2}\left( \hat{\mathcal {H}}+\lambda _{{j}}[\hat{X},\hat{\mathcal {H}}]+\dfrac{\lambda _{{j}}^{2}}{2!}[\hat{X},[\hat{X},\hat{\mathcal {H}}]]\right) , \end{aligned}$$
(B8)

where \(\hat{X}=\hat{a}^{\dag }_{{j}}\hat{\sigma }_{-}^{\text{c}}-\hat{a}_{{j}}\hat{\sigma }_{+}^{\text{c}}\).

After executing all commutators in Eq. (B8), one can reach

$$\begin{aligned} \begin{aligned} \hat{\mathcal {H}}_\text {eff}&= \hat{\mathcal {H}}_{0}+\hbar \sum _{{j}=1,2}\left( \omega _{{j}}^{r}+\lambda _{{j}}f_{{j}}\hat{\sigma }^{\text{c}}_{{z}} \right) \hat{a}^{\dag }_{{j}}\hat{a}_{{j}}+\hbar \sum _{{j}=1,2}J_{{j}}\left( \hat{a}^{\dag }_{{j}}\hat{c}_{{j}}+\hat{a}_{{j}}\hat{c}^{\dag }_{{j}}\right) +\hbar J'\left( \hat{a}^{\dag }_{2}\hat{a}_{1} \right. \\&\quad \left. + \hat{a}_{2}\hat{a}^{\dag }_{1}\right) + \hbar \sum _{{j}=1,2}\,\lambda _{{j}}\left[ g_{{j}}\left( \hat{\sigma }^{\text{c}}_{+}\hat{\sigma }_{-}^{\text{s}}+\hat{\sigma }^{\text{c}}_{-}\hat{\sigma }_{+}^{\text{s}}\right) +J_{{j}}\left( \hat{c}^{\dag }_{{j}}\hat{\sigma }^{\text{c}}_{-}+\hat{c}_{{j}}\hat{\sigma }^{\text{c}}_{+}\right) \right] +\mathcal {O}(\lambda _{{j}}^{2}), \end{aligned} \end{aligned}$$
(B9)

where \(\hat{\mathcal {H}}_{0}=\hat{\mathcal {H}}_{\text{s}\text{q}}+\hat{\mathcal {H}}_{{f}}+\hat{\mathcal {H}}_{{w}}\).

The first term in the following expression

$$\begin{aligned} \hbar \sum _{{j}=1,2}\,\lambda _{{j}}\left[ g_{{j}}\left( \hat{\sigma }^{\text{c}}_{+}\hat{\sigma }_{-}^{\text{s}}+\hat{\sigma }^{\text{c}}_{-}\hat{\sigma }_{+}^{\text{s}}\right) +J_{{j}}\left( \hat{c}^{\dag }_{{j}}\hat{\sigma }^{\text{c}}_{-}+\hat{c}_{{j}}\hat{\sigma }^{\text{c}}_{+}\right) \right] \end{aligned}$$
(B10)

describes the coupling between the source qubit and the control qubit. The second term describes the coupling between the filters and the control qubit. Since \(\lambda _{{j}}\) is a vanishing parameter (see Eq. (9)) and considering that inter-qubits detuning and control-qubit-filters detuning are large, we neglect these two terms. Consequently, the Hamiltonian \(\hat{\mathcal {H}}_\text {eff}\) given by Eq. (B9) is reduced to the form of (12).

Appendix C System Dynamics

1.1 C.1 Heisenberg Equations

Using the Hamiltonian \(\hat{\mathcal {H}}_\text {eff}\) given by Eq. (12), one obtains the Heisenberg equations for the source-qubit variable

$$\begin{aligned} \left( \dfrac{\partial }{\partial t}+i\omega _{\text{s}}\right) \hat{\sigma }_{-}^{\text{s}}=i\hat{\sigma }_{{z}}^{\text{s}}\sum _{{j}=1}^{2}g_{{j}}\hat{a}_{{j}}. \end{aligned}$$
(C11)

The equation of motion for the j-th resonator variable is read as

$$\begin{aligned} \left( \dfrac{\partial }{\partial t}+i\varpi _{{j}}^{r}\right) \hat{a}_{{j}}=-ig_{{j}}\hat{\sigma }_{-}^{\text{s}}-iJ^{\prime }\hat{a}_{{j}'}-iJ_{{j}}\hat{c}_{{j}}, \quad {j}'\ne {j}, \end{aligned}$$
(C12)

and for the j-th filter variable

$$\begin{aligned} \left( \dfrac{\partial }{\partial t}+i\omega _{{j}}^{{f}}\right) \hat{c}_{{j}}=-iJ_{{j}}\hat{a}_{{j}}-iU_{{j}}\int d\nu \hat{b}_{{j}\nu }, \end{aligned}$$
(C13)

where \(\{{j},{j}'\}\in \{1,2\}\). Waveguides variable obeys the equation of motion as follows

$$\begin{aligned} \left( \dfrac{\partial }{\partial t}+i\nu \right) \hat{b}_{{j}\nu }=-iU_{{j}}\hat{c}_{{j}}, \end{aligned}$$
(C14)

with the formal solution written as

$$\begin{aligned} \hat{b}_{{j}\nu }(t)=\hat{b}_{{j}\nu }(0)e^{-i\nu t}-iU_{{j}}\int _{0}^{t}d\tau e^{-i\nu (t-\tau )}\hat{c}_{{j}}(\tau ). \end{aligned}$$
(C15)

Integration of both sides of the above relation over photon frequencies \(\nu\) leads to

$$\begin{aligned} \int d\nu \hat{b}_{{j}\nu }=\hat{B}_{{j}}^{in}-i\sqrt{\dfrac{\pi \kappa _{{j}}}{2}}\hat{c}_{{j}}, \end{aligned}$$
(C16)

where operator \(\hat{B}_{{j}}^{in}=\int d\nu \exp (-i\nu t)\hat{b}_{{j}\nu }(0)\) stands for the input operator of the field in the \({j}\)-th waveguide [56]. Substituting Eq. (C16) into Eq. (C13), one obtains

$$\begin{aligned} \left( \dfrac{\partial }{\partial t}+i\tilde{\omega }_{{j}}^{{f}}\right) \hat{c}_{{j}}=-iJ_{{j}}\hat{a}_{{j}}-iU_{{j}}\hat{B}_{{j}}^{in}, \end{aligned}$$
(C17)

where we have introduced a notation \(\tilde{\omega }_{{j}}^{{f}}=\omega _{{j}}^{{f}}-i\kappa _{{j}}/2\).

1.2 C.2 Wave Function of the System

Fig. 6
figure 6

States of the subsystem \(\mathcal {S}\) in the single-excitation sector and transition pathways between these states. Dashed lines indicate an irreversible leakage of the photon from the resonator to the waveguide. The initial state of the subsystem \(\mathcal {S}\) is shown by the shaded bar

In the dispersive regime interaction between the control qubit and the drain resonators, the number of excitation in the subsystem \(\mathcal {S}\) is conserved since \(\left[ \hat{\mathcal {N}}_{ex}^{\mathcal {S}},\hat{\mathcal {H}}_\text {eff}\right] =0\), where \(\hat{\mathcal {N}}_{ex}^{\mathcal {S}}\) stands for the operator of the excitation number in \(\mathcal {S}\), given by

$$\begin{aligned} \hat{\mathcal {N}}_{ex}^{\mathcal {S}}=\sigma _{+}^{\text{s}}\sigma _{-}^{\text{s}}+\sum _{{j}=1}^{2}\left( \hat{a}^{\dag }_{{j}}\hat{a}_{{j}}+\hat{c}^{\dag }_{{j}}\hat{c}_{{j}}+\int d\omega \hat{b}^{\dag }_{{j}\omega }\hat{b}_{{j}\omega }\right) . \end{aligned}$$
(C18)

Thus, in the dispersive regime (9), the state of the system at the arbitrary moment t can be expressed as

$$\begin{aligned} |\Psi (t)\rangle =|\psi _{\mathcal {S}}(t)\rangle \otimes |\Phi _{C}\rangle , \end{aligned}$$
(C19)

where \(|\psi _{\mathcal {S}}\rangle\) and \(|\Phi _{C}\rangle\) denote the states of the subsystem \(\mathcal {S}\) and the control qubit, respectively.

The subsystem \(\mathcal {S}\) is expressed as

$$\begin{aligned} \begin{aligned} |\psi _{\mathcal {S}}(t)\rangle =&\sum _{{j}=1}^{2}\int d\nu \mathcal {B}_{{j}\nu }(t)\hat{b}^{\dag }_{{j}\nu }|\varnothing \rangle \\&+\sum _{{j}=1}^{2}\left[ \mathcal {A}_{{j}}(t)\hat{a}^{\dag }_{{j}} +\mathcal {C}_{{j}}(t)\hat{c}^{\dag }_{{j}}\right] |\varnothing \rangle +\mathcal {Q}(t)\hat{\sigma }_{+}^{\text{s}}|\varnothing \rangle , \end{aligned} \end{aligned}$$
(C20)

where \(|\varnothing \rangle =|g\rangle |0;0\rangle _{\text{r}}|0;0\rangle _{{f}}|0;0\rangle _{{w}}\) is a vacuum state of the subsystem \(\mathcal {S}\). The initial (at \(t=0\)) state of the system \(|\Psi \rangle _{in}\equiv |\Psi (0)\rangle\) is given by

$$\begin{aligned} |\Psi \rangle _{in}=\hat{\sigma }_{+}^{\text{s}}|\varnothing \rangle . \end{aligned}$$
(C21)
Fig. 7
figure 7

Excitation dynamics of subsystem \(\mathcal {S}\). The density probabilities \(|Q(t)|^2\) (blue), \(|A_{{j}}(t)|^2\) (orange for \({j}=1\) and red for \({j}=2\)) are depicted on (a); \(|C_{{j}}(t)|^2\) (pink for \({j}=1\) and purple for \({j}=2\)) are depicted on (b). The parameters are the same as in Fig. 5

The schematic illustration of the state of the system conversion is depicted on Fig. 6.

Here, we neglect the effect of thermal photons on the dynamics of the system. Circuit QED setups typically operate at temperatures \(T_{s}\sim 10-20 mK\) that gives the average number of thermal photons in the system \(n_{th}\sim 10^{-3}\) justifying our approximation.

The probability amplitudes entering the wave function (C20) are governed by the equations of motion as follows

$$\begin{aligned} {\textbf {A}}(t)\equiv \left( \begin{array}{c} \mathcal {Q}(t)\\ \mathcal {A}_{{j}}(t)\\ \mathcal {C}_{{j}}(t)\\ \mathcal {B}_{{j}\nu }(t) \end{array} \right) = \left( \begin{array}{c} \langle \varnothing |\hat{\sigma }_{-}^{\text{s}}(t)|\Psi _{in}\rangle \\ \langle \varnothing |\hat{a}_{{j}}(t)|\Psi _{in}\rangle \\ \langle \varnothing |\hat{c}_{{j}}(t)|\Psi _{in}\rangle \\ \langle \varnothing |\hat{b}_{{j}\nu }(t)|\Psi _{in}\rangle \end{array} \right) , \end{aligned}$$
(C22)
$$\begin{aligned} \left( {\textbf {I}}\dfrac{\partial }{\partial t}+{\textbf {X}}\right) {\textbf {A}}(t)=0, \end{aligned}$$
(C23)

where \({\textbf {I}}\) stands for the identity matrix and \({\textbf {X}}\) reads as

$$\begin{aligned} \left( \begin{array}{c c c c c c c} \omega _{s} &{} g_{1} &{} g_{2} &{} 0 &{} 0 &{} 0 &{} 0 \\ g_{1} &{} \varpi _{1}^{\text{r}} &{} J^{\prime } &{} J_{1} &{} 0 &{} 0 &{} 0\\ g_{2} &{} J^{\prime } &{} \varpi _{2}^{\text{r}} &{} 0 &{} J_{2} &{} 0 &{} 0\\ 0 &{} J_{1} &{} 0 &{} \tilde{\omega }_{1}^{{f}} &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} J_{2} &{} 0 &{} \tilde{\omega }_{2}^{{f}} &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} U_{1} &{} 0 &{} \nu &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} U_{2} &{} 0 &{} \nu \end{array} \right) . \end{aligned}$$
(C24)

The solution of Eq. C23 is used to study the dynamics of wave function in the system (see Figs. 5 and 7).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriichuk, V. Single-Photon Source with Emission Direction Controlled by a Qubit State. J Low Temp Phys 212, 91–112 (2023). https://doi.org/10.1007/s10909-023-02978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02978-y

Keywords

Navigation