Skip to main content

Advertisement

Log in

Photon Number Resolution with an Iridium Optical Transition Edge Sensor at a Telecommunication Wavelength

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report the photon number resolution at a telecommunication wavelength using a fabricated iridium optical transition edge sensor (TES). Iridium is a chemically stable material, and hence, the iridium TES is expected to exhibit long-term stable device characteristics. Because of the material stability, iridium TES can be formed in relatively simple single-layer structure, which would exhibit uniform device characteristics if large-arrays are constructed in a future. An iridium TES with a sensitive area of 8 μm × 8 μm was fabricated via radio frequency magnetron sputtering, photolithography, and a lift-off technique. The device was cooled in a dilution refrigerator, and its characteristics such as current-to-voltage curve, power-to-voltage curve, and power-to-bath-temperature curve were investigated. The TES exhibited a transition temperature of 355 mK. The TES was irradiated with a pulsed laser source with a wavelength of 1528 nm. A fast response speed was obtained using the TES, and the dominant decay time constant was 761 ns. The photon number resolution was successfully performed, and the energy resolution was 0.464 eV in full width at half maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.N. Alexander, S. Yokoyama, A. Furusawa, N.C. Menicucci, Phys. Rev. A 97, 032302 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, S. Inoue, Nat. Photonics 4, 655 (2010)

    Article  ADS  Google Scholar 

  3. D.V. Reddy, R.R. Nerem, S.W. Nam, R.P. Mirin, V.B. Verma, Optica 7, 1649 (2020)

    Article  ADS  Google Scholar 

  4. C. Cahall, K.L. Nicolich, N.T. Islam, G.P. Lafyatis, A.J. Miller, D.J. Gauthier, J. Kim, Optica 4, 1534 (2017)

    Article  ADS  Google Scholar 

  5. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K.G. Lagoudakis, M. Benkhaoul, F. Lévy, A. Fiore, Nat. Photonics. 2, 302 (2008)

    Article  Google Scholar 

  6. A.E. Lita, A.J. Miller, S.W. Nam, Opt. Express 16, 3032 (2008)

    Article  ADS  Google Scholar 

  7. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, T. Zama. Opt. Express 19, 870 (2011)

    Article  ADS  Google Scholar 

  8. Y. Miura, T. Irimatsugawa, M. Ohno, H. Takahashi, Nucl. Instrum. Methods Phys. Res. Sect. A 954, 162120 (2020)

    Article  Google Scholar 

  9. T. Jodoi, Y. Mitsuya, R. Smith, T. Sakura, M. Ohno, H. Takahashi, J. Low Temp Phys. (2022). https://doi.org/10.1007/s10909-022-02757-1

    Article  Google Scholar 

  10. S. Hatakeyama, M. Ohno, R.M.T. Damayanthi, H. Takahashi, Y. Kuno, K. Maehata, C. Otani, K. Takasaki, IEEE Trans. Appl. Supercond. 23, 2100804 (2013)

    Article  ADS  Google Scholar 

  11. E. Monticone, M. Castellino, R. Rocci, M. Rajteri, IEEE Trans. Appl. Supercond. 31, 2102005 (2021)

    Article  Google Scholar 

  12. A.J. Miller, A.E. Lita, B. Calkins, I. Vayshenker, S.M. Gruber, S.W. Nam, Opt. Express 19, 9102 (2011)

    Article  ADS  Google Scholar 

  13. R. Kobayashi, K. Hattori, S. Inoue, D. Fukuda, IEEE Trans. Appl. Supercond. 29, 2101105 (2019)

    Article  Google Scholar 

  14. D.U. Gubser, R.J. Soulen Jr., J. Low Temp. Phys. 13, 211 (1973)

    Article  ADS  Google Scholar 

  15. F.Q.L. Friesen, C.R. Howell, Nucl. Instrum. Methods Phys. Res. Sect. A 955, 163302 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JST, CREST Grant Number JPMJCR17N4, Japan. We would like to thank Dr. Jörn Beyer for providing us with SQUID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Mitsuya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsuya, Y., Konno, T., Takasu, S. et al. Photon Number Resolution with an Iridium Optical Transition Edge Sensor at a Telecommunication Wavelength. J Low Temp Phys 210, 498–505 (2023). https://doi.org/10.1007/s10909-022-02928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02928-0

Keywords

Navigation