Skip to main content
Log in

Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Low-temperature photon-number-resolving detectors allow for direct access to the photon number distribution of quantum light sources and can thus be exploited to explore the photon statistics, e.g., solid-state-based non-classical light sources. In this work, we report on the setup and calibration of a detection system based on fiber-coupled tungsten transition-edge sensors (W-TESs). Our stand-alone system comprises two W-TESs, read out by two 2-stage-SQUID current sensors, operated in a compact detector unit that is integrated in an adiabatic demagnetization refrigerator. Fast low-noise analog amplifiers and digitizers are used for signal acquisition. The detection efficiency of the single-mode fiber-coupled detector system in the spectral region of interest (850–950 nm) is determined to be larger than 87 %. The presented detector system opens up new routes in the characterization of quantum light sources for quantum information, quantum-enhanced sensing and quantum metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Y. He, Z.E. Su, H.L. Huang, X. Ding, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y.M. He, X.L. Wang, C. Schneider, M. Kamp, S. Höfling, C.Y. Lu, J.W. Pan, Phys. Rev. Lett. 118, 190501 (2017)

    Article  ADS  Google Scholar 

  2. T. Heindel, C.A. Kessler, M. Rau, C. Schneider, M. Fuerst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Rossbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, NJP 14, 083001 (2012)

    Article  ADS  Google Scholar 

  3. V. Giovannetti, S. Lloyd, L. Maccone, Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  4. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J.H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, S. Reitzenstein, Nat. Commun. 6, 7662 (2015)

    Article  Google Scholar 

  5. T. Heindel, A. Thoma, M. von Helversen, M. Schmidt, A. Schlehahn, M. Gschrey, P. Schnauber, J.H. Schulze, A. Strittmatter, J. Beyer, S. Rodt, A. Carmele, A. Knorr, S. Reitzenstein, Nat. Commun. 8, 14870 (2017)

    Article  ADS  Google Scholar 

  6. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Phys. Rev. Lett. 96, 130501 (2006)

    Article  ADS  Google Scholar 

  7. R. Hanbury-Brown, R.Q. Twiss, Nature 177, 27 (1956)

    Article  ADS  Google Scholar 

  8. A.E. Lita, A.J. Miller, S.W. Nam, Opt. Express 16, 3032–3040 (2008)

    Article  ADS  Google Scholar 

  9. A.E. Lita, B. Calkins, L.A. Pellouchoud, A.J. Miller, S.W. Nam, SPIE 4, 7681 (2010)

    Google Scholar 

  10. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, T. Zama, SPIE 4, 7681 (2010)

    Google Scholar 

  11. E. Schlottmann, M. von Helversen, H.A.M. Leymann, T. Lettau, F. Krüger, M. Schmidt, C. Schneider, M. Kamp, S. Höfling, J. Beyer, J. Wiersig, S. Reitzenstein, Exploring the photon-number distribution of bimodal microlasers. Phys. Rev. Appl. (accepted, 2018)

  12. M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S.W. Nam, R. Ursin, A. Zeilinger, Nature 497, 7681 (2010)

    Google Scholar 

  13. S. Friedrich, T. Niedermayr, O. Drury, M.F. Cunningham, M.L. van den Berg, J.N. Ullom, A. Loshak, T. Funk, S.P. Cramer, J.D. Batteux, E. See, M. Frank, S.E. Labov, Nucl. Instrum. Methods A 2, 467–468 (2001)

    Google Scholar 

  14. A.J. Miller, A.E. Lita, B. Calkins, I. Vayshenker, S.M. Gruber, S.W. Nam, Opt. Express 19, 9102 (2011)

    Article  ADS  Google Scholar 

  15. D. Drung, C. Aßmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, Th Schurig, I.E.E.E. Trans, Appl. Supercond. 17, 699–704 (2007)

    Article  ADS  Google Scholar 

  16. P.C. Humphreys, B.J. Metcalf, T. Gerrits, T. Hiemstra, A.E. Lita, J. Nunn, S.W. Nam, A. Datta, W.S. Kolthammer, I.A. Walmsley, New J. Phys. 17, 103044 (2015)

    Article  ADS  Google Scholar 

  17. M. Klaas, E. Schlottmann, H. Flayac, F. Gericke, M. Schmidt, M. v. Helversen, J. Beyer, S. Brodbeck, H. Suchomel, S. Höfling, S. Reitzenstein, C. Schneider, Photon number-resolved measurement of an exciton-polariton condensate. Phys. Rev. Lett. (submitted, 2017)

Download references

Acknowledgements

Most of the results in this paper come from the project EMPIR 14IND05 MIQC2. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme. We gratefully acknowledge A.E. Lita and S.W. Nam from NIST, USA, for providing the TES detector chips, and D. Wernicke from Entropy GmbH, Germany, for the mechanical design of the ADR unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, M., von Helversen, M., López, M. et al. Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources. J Low Temp Phys 193, 1243–1250 (2018). https://doi.org/10.1007/s10909-018-1932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1932-1

Keywords

Navigation