Skip to main content

Advertisement

Log in

Iridium–Gold Bilayer Optical Transition Edge Sensor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recently, there is a demand for a single-photon detector in the mid-infrared wavelength. For that reason, we fabricated an optical transition edge sensor with an Ir–Au bilayer and demonstrated the behavior of this device. There is a possibility to improve the energy resolution of this device by lowering superconducting transition temperature and reducing heat capacity. In addition to this, because of the chemical stability of Iridium, the Iridium-based devices are easy to fabricate, and they tend to have long-term stability. We also etched a silicon wafer to match the inner diameter of an optical fiber sleeve. This process helped us improve the accuracy of alignment with the core of optical fiber and a sensitive area of this optical transition edge sensor. Consequently, we found that the superconducting transition temperature was estimated to be approximately 175 mK and developed an Ir–Au optical transition edge microcalorimeter with an energy resolution of 0.68 eV full-width at half-maximum for the pulse laser at 850 nm. This result will contribute to the measurement of photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Chen, D. Schwarzer, V.B. Verma, M.J. Stevens, F. Marsili, R.P. Mirin, S.W. Nam, A.M. Wodtke, Acc. Chem. Res. 50(6), 1400–1409 (2017). https://doi.org/10.1021/acs.accounts.7b00071

    Article  Google Scholar 

  2. K.D. Irwin, G.C. Hilton, D.A. Wollman, J.M. Martinis, Appl. Phys. Lett. 69, 1945 (1996). https://doi.org/10.1063/1.117630J

    Article  ADS  Google Scholar 

  3. S. Hatakeyama, M. Ohno, H. Takahashi et al., J. Low Temp. Phys. 176, 560–565 (2014). https://doi.org/10.1007/s10909-014-1090-z

    Article  ADS  Google Scholar 

  4. M. Fedkevych et al., IEEE Trans. Appl. Supercond. 31(5), 1–4 (2021). https://doi.org/10.1109/TASC.2021.3063328

    Article  Google Scholar 

  5. J.M. Martinis, G.C. Hilton, K.D. Irwin, D.A. Wollman, Nucl. Instrum. Methods Phys. Res. 444, 23 (2000). https://doi.org/10.1016/S0168-9002(99)01320-0

    Article  ADS  Google Scholar 

  6. G. Wang, J. Beeman, C.L. Chang, J. Ding, A. Drobizhev, B.K. Fujiwara, K. Han, S. Han, R. Hennings-Yeomans, G. Karapetrov, Y.G. Kolomensly, V. Novosad, T. O’Donnell, J.L. Ouellet, J. Pearson, B. Sheff, V. Singh, S. Wagaarachichi, J.G. Wallig, V.G. Yefremenko, IEEE Trans Appl. Supercond. 27(4), 1–5 (2017). https://doi.org/10.1109/TASC.2016.2646373

    Article  Google Scholar 

  7. Y. Miura, T. Irimatsugawa, M. Ohno, H. Takahashi, Nucl.ear Inst. Methods Phys. Res. A 954, 162120 (2020). https://doi.org/10.1016/j.nima.2019.04.074

    Article  Google Scholar 

  8. J. Miller, A.E. Lita, B. Calkins, I. Vayshenker, S.M. Gruber, S.W. Nam, Opt. Express 19, 9102 (2011). https://doi.org/10.1364/OE.19.009102

    Article  ADS  Google Scholar 

  9. R. Kobayashi, K. Hattori, S. Inoue, D. Fukuda, IEEE Trans. Appl. Supercond. 29(1), 2101105 (2019)

    Google Scholar 

  10. S.H. Moseley, R.L. Kelley, R.J. Schoelkopf, A.E. Szymkowiak, D. McCammon, J. Zhang, IEEE Trans. Nucl. Sci. 35, 59 (1988). https://doi.org/10.1109/23.12673

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JST Moonshot R&D Grant No. JPMJMS2064-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Jodoi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodoi, T., Mitsuya, Y., Smith, R. et al. Iridium–Gold Bilayer Optical Transition Edge Sensor. J Low Temp Phys 209, 556–561 (2022). https://doi.org/10.1007/s10909-022-02757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02757-1

Keywords

Navigation