Skip to main content
Log in

Phonon and Optical-roton Branches of Excitations of the Bose System

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

For a system of a large number of Bose particles, a chain of coupled equations for the averages of field operators is obtained. In the approximation where only the averages of one field operator and the averages of products of two operators at zero temperature are taken into account, there is derived a closed system of dynamic equations. Taking into account the finite range of the interaction potential between particles, the spectrum of elementary excitations of a many-particle Bose system is calculated, and it is shown that it has two branches: a sound branch and an optical branch with an energy gap at zero momentum. At high density, both branches are nonmonotonic and have the roton-like minima. The dispersion of the phonon part of the spectrum is considered. The performed calculations and analysis of experiments on neutron scattering allow to make a statement about the complex structure of the Landau dispersion curve in the superfluid \(^4\)He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.P. Gross, Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454 (1961)

    Article  MATH  Google Scholar 

  2. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas. JETP 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)]

  3. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, 2003)

  4. C.H. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, 2001)

  5. Yu.M. Poluektov, The polarization properties of an atomic gas in a coherent state. Low Temp. Phys. 37, 986 (2011)

    Article  ADS  Google Scholar 

  6. N.N. Bogolyubov, Problems of dynamic theory in statistical physics, In the book: N.N. Bogolyubov, Selected works in three volumes, Vol. 2 Naukova dumka, Kiev (1970)

  7. M. Girardeau, R. Arnowitt, Theory of many-boson systems: pair theory. Phys. Rev. 113, 755 (1959)

    Article  ADS  MATH  Google Scholar 

  8. M. Luban, Statistical mechanics of a nonideal boson gas: pair Hamiltonian model. Phys. Rev. 128, 965 (1962)

    Article  ADS  MATH  Google Scholar 

  9. Yu.M. Poluektov, Self-consistent field model for spatially inhomogeneous Bose systems. Low Temp. Phys. 28, 429 (2002)

    Article  ADS  Google Scholar 

  10. A.S. Peletminskii, S.V. Peletminskii, Yu.M. Poluektov, Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction. Condens. Matter Phys. 16, 13603 (2013). arXiv:1303.5539

    Article  ADS  Google Scholar 

  11. Yu.M. Poluektov, Spectrum of elementary excitations of the Bose system with allowance for pair correlations. Low Temp. Phys. 44, 1040 (2018)

    Article  ADS  Google Scholar 

  12. I.M. Khalatnikov, Theory of Superfluidity (Nauka, Moscow, 1971)

    Google Scholar 

  13. D. Henshaw, A. Woods, Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. 121, 1266 (1961)

    Article  ADS  Google Scholar 

  14. W.G. Stirling, H.R. Glyde, Temperature dependence of the phonon and roton excitations in liquid \(^4\)He. Phys. Rev. B 41, 4224 (1990)

    Article  ADS  Google Scholar 

  15. H.R. Glyde, A. Griffin, Zero sound and atomiclike exitation: the nature of phonons and rotons in liquid \(^4\)He. Phys. Rev. Lett. 65, 1454 (1990)

    Article  ADS  Google Scholar 

  16. H.R. Glyde, Density and quasiparticle excitations in liquid \(^4\)He. Phys. Rev. B 45, 7321 (1992)

    Article  ADS  Google Scholar 

  17. N.M. Blagoveshchenskii, I.V. Bogoyavlenskii, L.V. Karnatsevich, Zh.A. Kozlov, V.G. Kolobrodov, A.V. Puchkov, A.N. Skomorokhov, Two-branch structure of the spectrum of elementary excitations of superfluid helium-4. JETP Lett. 57, 414 (1993)

    Google Scholar 

  18. N.M. Blagoveshchenskii, I.V. Bogoyavlenskii, L.V. Karnatsevich, Zh.A. Kozlov, V.G. Kolobrodov, V.B. Priezzhev, A.V. Puchkov, A.N. Skomorokhov, V.S. Yarunin, Structure of the excitation spectrum of liquid \(^4\)He. Phys. Rev. B 50, 16550 (1994)

    Article  ADS  Google Scholar 

  19. I.V. Bogoyavlenskii, L.V. Karnatsevich, Zh.A. Kozlov, V.G. Kolobrodov, V.B. Priezzhev, A.V. Puchkov, A.N. Skomorokhov, Study of the excitation spectrum of liquid \(^4\)He by the method of inelastic scattering of neutrons. Fiz. Nizk. Temp. 20, 626 (1994)

    Google Scholar 

  20. Zh.A. Kozlov, The spectrum of excitation and Bose condensate in liquid \(^4\)He. Phys. Element. Particles Atomic Nuclei 27, 1705 (1996)

    Google Scholar 

  21. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Vol. 3 Butterworth-Heinemann (1981)

  22. N.N. Bogolyubov, Quasi-averages in problems of statistical mechanics. in The book: N.N. Bogolyubov, Selected Works in Three Volumes Naukova Dumka, Kiev, Vol. 3 (1971)

  23. Yu.M. Poluektov, On self-consistent determination of the quasi-average in statistical physics. Low Temp. Phys. 23, 685 (1997)

    Article  ADS  Google Scholar 

  24. N.N. Bogolyubov, Lectures on quantum statistics, in the book: N.N. Bogolyubov, Selected Works in Three Volumes, Vol. 2 (Naukova dumka, Kiev 1970)

  25. N.N. Bogolyubov, N.N. Bogolyubov Jr., Introduction to Quantum Statistical Mechanics World Scientific (2009)

  26. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, The Molecular Theory of Gases and Liquids Wiley-Interscience (1964)

  27. J.H. Ferziger, H.G. Kaper, Mathematical Theory of Transport Processes in Gases Elsevier Science (1972)

  28. R.A. Aziz, M.J. Slaman, An examination of ab initio results for the helium potential energy curve. J. Chem. Phys. 94, 8047 (1991)

    Article  ADS  Google Scholar 

  29. J.B. Anderson, C.A. Traynor, B.M. Boghosian, An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential. J. Chem. Phys. 99, 345 (1993)

    Article  ADS  Google Scholar 

  30. D.J. Thouless, The Quantum Mechanics of Many-body Systems (Academic Press, NY, 1972)

    MATH  Google Scholar 

  31. R. Jastrow, Many-body problem with strong forces. Phys. Rev. 98, 1479 (1955)

    Article  ADS  MATH  Google Scholar 

  32. Yu.M. Poluektov, A.A. Soroka, The equation of state and the quasiparticle mass in the degenerate Fermi system with an effective interaction. East Eur. J. Phys. 2(3), 40 (2015). arXiv:1511.07682

  33. Yu.M. Poluektov, A.A. Soroka, S.N. Shulga, The self-consistent field model for Fermi systems with account of three-body interactions. Condens. Matter Phys. 18(4), 43005 (2015). arXiv:1503.02428v2

  34. I.V. Bogoyavlenskii, L.V. Karnatsevich, Zh.A. Kozlov, A.V. Puchkov, Bose condensation in liquid \(^4\)He. Fiz. Nizk. Temp. 16, 139 (1990)

    ADS  Google Scholar 

  35. Yu.M. Poluektov, A simple model of Bose-Einstein condensation of interacting particles, JLTP 186, 347 (2017). arXiv:1602.02746

  36. A.P. Ivashin, Yu.M. Poluektov, Short-wave excitations in non-local Gross–Pitaevskii model. Cent. Eur. J. Phys. 9, 857 (2011). arXiv:1004.0442

    Google Scholar 

  37. D. Pines, P. Nozieres, The Theory of Quantum Liquids, Vol. 1: Normal Fermi liquids (CRC Press, 1989)

  38. A.D.B. Woods, E.C. Svensson, P. Martel, The first-to-zero-sound transition in non-superfluid liquid \(^4\)He. Phys. Lett. A 57, 439 (1976)

    Article  ADS  Google Scholar 

  39. L.D. Landau, The theory of superfluidity of helium II, JETP 11, 592 (1941); J. Phys. USSR 5, 71 (1941) [Collected works of L.D. Landau, Vol. 1, Nauka, Moscow, 1969, no 44]

  40. L.D. Landau, On the theory of superfluidity of helium II. J. Phys. USSR 11, 91 (1947) [Collected works of L.D. Landau, Vol. 2, Nauka, Moscow, 1969, no 61]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Poluektov.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: General Form of Coefficients in the Dispersion Equation (55)

$$\begin{aligned}L_k&\equiv A_k+C_k,\qquad N_k\equiv A_kC_k-B_kD_k,\nonumber\\ A_k&=\Big [\varepsilon _k^{(1)}+2xnU_0\Big ]\!\Big [\varepsilon _k^{(2)}-2nU_0(x+z)\Big ] \nonumber \\&\quad +\,2xn\big (U_0+\Delta U_{k/2}\big )\big [2nU_0(2w-x)+\alpha _k\big ] \nonumber \\&\quad +\,2xn\big [2U_0+\big (\Delta U_k+\Delta U_{k/2}\big )\big ]\!\big [2nU_0(x+z)-\alpha _k\big ], \end{aligned}$$
(A1)
$$\begin{aligned}B_k&=xn\big(U_0+\Delta U_{k/2}\big)\Big [\varepsilon _k^{(1)}+\varepsilon _k^{(3)}+2nU_0(2w-z-2x)-2xn\big(\Delta U_{k}+\Delta U_{k/2}\big)\Big ], \end{aligned}$$
(A2)
$$\begin{aligned}&C_k=\Big [\varepsilon _k^{(3)}+2nU_0(2w-z-x)\Big ]^{\!2} + 2xn\big (U_0+\Delta U_{k/2}\big )\big [2nU_0(2w-z-3x)+\gamma _k-2\delta _k\big ], \end{aligned}$$
(A3)
$$\begin{aligned}D_k&=2\Big [\varepsilon _k^{(3)}+2nU_0(2w-z-x)\Big ]\!\big [2nU_0(2w-x)+\alpha _k\big ] \nonumber \\&\quad +2\Big [\varepsilon _k^{(2)}-2nU_0(x+z)\Big ]\!\big [2nU_0(2w+2z+x)+\gamma _k\big ] \nonumber \\&\quad +\,4\big [nU_0(4x+3z)+\delta _k\big ]\!\big [2nU_0(x+z)-\alpha _k\big ]. \end{aligned}$$
(A4)
$$\begin{aligned}&\alpha _k\equiv n\Delta U_k(1-2x-z), \quad \beta _k\equiv n\Delta U_k(1+2x+z), \quad \gamma _k\equiv n\Delta U_k(1+2x+3z), \nonumber \\&\delta _k\equiv n\Delta U_k(x+z) + n\Delta U_{k/2}(3x+2z), \nonumber \\&\varepsilon _k^{(1)}\equiv \varepsilon _k+\beta _k, \quad \varepsilon _k^{(2)}\equiv \varepsilon _k+\alpha _k, \quad \varepsilon _k^{(3)}\equiv \frac{\varepsilon _k}{2}+2n\Delta U_{k/2}(2-x). \end{aligned}$$
(A5)

In formulas (A1)–(A4) the notation (A5) is used.

Appendix B: Coefficients of the Dispersion Equation (55) for the Potential (26)

$$\begin{aligned}\frac{A_k}{n^2U_0^2}\equiv {\tilde{A}}_k&=4x(z+2w)+2b\Big [-\zeta z\kappa ^2-3(x+z)(1+z)f(\kappa )+6x(z+2w)f\Big (\frac{\kappa }{2}\Big )\Big ] \nonumber \\&\quad + \,b^2\Big [\zeta ^2\kappa ^4 + 6\zeta \kappa ^2f(\kappa )+9(1+z)(1-2x-z)f^2(\kappa )\Big ], \end{aligned}$$
(B1)
$$\begin{aligned}\frac{B_k}{n^2U_0^2}\equiv {\tilde{B}}_k&=2x(2w-2x-z)+3bx\!\left[ \frac{1}{2}\zeta \kappa ^2+(1+z)f(\kappa )+2(2+2w-4x-z)f\Big (\frac{\kappa }{2}\Big )\right] \nonumber \\&\quad + \,9b^2f\Big (\frac{\kappa }{2}\Big )x\!\left[ \frac{1}{2}\zeta \kappa ^2+(1+z)f(\kappa )+4(1-x)f\Big (\frac{\kappa }{2}\Big )\right] , \end{aligned}$$
(B2)
$$\begin{aligned}&\frac{C_k}{n^2U_0^2}\equiv {\tilde{C}}_k=4\big (4w^2+2xw-4x^2-2wz-xz\big ) \nonumber \\&\quad +\,2b\!\left[ (2w-x-z)\zeta \kappa ^2+3x(1+z)f(\kappa )+6\big (8w-4x-2xw-4x^2-4z-xz\big )f\Big (\frac{\kappa }{2}\Big )\right] \nonumber \\&\quad + \,b^2\left[ \frac{\zeta ^2}{4}\kappa ^4+6(2-x)\zeta \kappa ^2f\Big (\frac{\kappa }{2}\Big )+72\big (2-2x-x^2-xz\big )f^2\Big (\frac{\kappa }{2}\Big ) + 18x(1+z)f(\kappa )f\Big (\frac{\kappa }{2}\Big )\right] , \end{aligned}$$
(B3)
$$\begin{aligned}&\frac{D_k}{n^2U_0^2}\equiv {\tilde{D}}_k=8\big (4w^2+2x^2-2xw-2wz+3xz\big ) \nonumber \\&\quad +\,4b\Big [\Big (3w+2z+\frac{x}{2}\Big )\zeta \kappa ^2+3\big (4w+6x^2+5xz-4xw-2wz-5x-3z\big )f(\kappa ) \nonumber \\&\quad +\,6\big (4w-2x+6xw+4wz+xz\big )f\Big (\frac{\kappa }{2}\Big )\Big ] \nonumber \\&\quad + \,3b^2\!\left[ (3+2x+5z)\zeta \kappa ^2f(\kappa )+6(1+z)(1-2x-z)f^2(\kappa ) + 24(1-2x-z)^2f(\kappa )f\Big (\frac{\kappa }{2}\Big )\right] , \end{aligned}$$
(B4)
$$\begin{aligned}&L_k=A_k+C_k=(nU_0)^2{\tilde{L}}_k, \qquad {\tilde{L}}_k={\tilde{A}}_k + {\tilde{C}}_k, \nonumber \\&\quad N_k=A_kC_k-B_kD_k=(nU_0)^4{\tilde{N}}_k, \qquad {\tilde{N}}_k={\tilde{A}}_k {\tilde{C}}_k-{\tilde{B}}_k{\tilde{D}}_k. \end{aligned}$$
(B5)

The notation is used:

$$\begin{aligned} \begin{array}{ccc} \displaystyle { \zeta \equiv \frac{\varepsilon _a}{\chi I}=\frac{1}{\theta \chi }, \qquad b=\frac{1}{1-J}, \qquad \kappa \equiv r_0k. } \end{array} \end{aligned}$$
(B6)

The function \(f(\kappa )\) is defined by formulas (59), (60).

Appendix C: Coefficients of the Dispersion Equation (55) for the Potential (26) in the Long Wavelength Limit \(\kappa \ll 1\)

$$\begin{aligned}&{\tilde{A}}_k\approx {\tilde{A}}_0+{\tilde{A}}_2\kappa ^2+{\tilde{A}}_3\kappa ^3+{\tilde{A}}_4\kappa ^4, \qquad {\tilde{B}}_k\approx {\tilde{B}}_0+{\tilde{B}}_2\kappa ^2+{\tilde{B}}_3\kappa ^3+{\tilde{B}}_4\kappa ^4, \nonumber \\&{\tilde{C}}_k\approx {\tilde{C}}_0+{\tilde{C}}_2\kappa ^2+{\tilde{C}}_3\kappa ^3+{\tilde{C}}_4\kappa ^4, \qquad {\tilde{D}}_k\approx {\tilde{D}}_0+{\tilde{D}}_2\kappa ^2+{\tilde{D}}_3\kappa ^3+{\tilde{D}}_4\kappa ^4, \nonumber \\&\tilde{L}_k\approx {\tilde{L}}_0+{\tilde{L}}_2\kappa ^2+{\tilde{L}}_3\kappa ^3+{\tilde{L}}_4\kappa ^4, \nonumber \\&{\tilde{L}}_0\equiv {\tilde{A}}_0+{\tilde{C}}_0, \quad {\tilde{L}}_2\equiv {\tilde{A}}_2+{\tilde{C}}_2, \quad {\tilde{L}}_3\equiv {\tilde{A}}_3+{\tilde{C}}_3, \quad {\tilde{L}}_4\equiv {\tilde{A}}_4+{\tilde{C}}_4, \nonumber \\&{\tilde{N}}_k\approx {\tilde{N}}_2\kappa ^2+{\tilde{N}}_3\kappa ^3+{\tilde{N}}_4\kappa ^4, \nonumber \\&\tilde{N}_2\equiv {\tilde{A}}_0{\tilde{C}}_2+{\tilde{C}}_0{\tilde{A}}_2-{\tilde{B}}_0{\tilde{D}}_2-{\tilde{D}}_0{\tilde{B}}_2, \nonumber \\&\tilde{N}_3\equiv {\tilde{A}}_0{\tilde{C}}_3+{\tilde{C}}_0{\tilde{A}}_3-{\tilde{B}}_0{\tilde{D}}_3-{\tilde{D}}_0{\tilde{B}}_3, \nonumber \\&\tilde{N}_4\equiv {\tilde{A}}_0{\tilde{C}}_4+{\tilde{C}}_0{\tilde{A}}_4+{\tilde{A}}_2{\tilde{C}}_2-{\tilde{B}}_0{\tilde{D}}_4-{\tilde{D}}_0{\tilde{B}}_4-{\tilde{B}}_2{\tilde{D}}_2. \end{aligned}$$
(C1)

Here

$$\begin{aligned}&{\tilde{A}}_0=4x(2w+z), \qquad {\tilde{B}}_0=2x(2w-z-2x),\nonumber \\&{\tilde{C}}_0=4\big (\!-4x^2+4w^2+2xw-2wz-xz\big ),\nonumber \\&{\tilde{D}}_0=8\big (\!2x^2+4w^2-2xw-2wz+3xz\big ),\end{aligned}$$
(C2)
$$\begin{aligned}&{\tilde{A}}_2=-2zb\zeta + u\big (2z^2+xz-2xw+2x+2z\big ),\nonumber \\&{\tilde{B}}_2=\frac{x}{2}\big [3b\zeta -u(4+z+2w-4x)\big ],\nonumber \\&{\tilde{C}}_2=2(2w-x-z)b\zeta + u\big (2x-8w+4z+2xw-xz+4x^2\big ),\nonumber \\&{\tilde{D}}_2=4\!\left( 3w+2z+\frac{x}{2}\right) \!b\zeta + 4u\Big (6x-6w+3z+xw-6x^2-\frac{11}{2}xz\Big ), \end{aligned}$$
(C3)
$$\begin{aligned}&{\tilde{A}}_3=\frac{\pi }{32}(b-1)\big (4x+4z+3xz-2xw+4z^2\big ), \nonumber \\&{\tilde{B}}_3=-\frac{\pi }{64}(b-1)\,x(6+3z+2w-4x), \nonumber \\&{\tilde{C}}_3=-\frac{\pi }{32}(b-1)\big (8w-4z+3xz-2xw-4x^2\big ), \nonumber \\&{\tilde{D}}_3=-\frac{\pi }{16}(b-1)\big (24x^2 -10xw + 21xz -4wz - 22x +20w -12z \big ), \end{aligned}$$
(C4)
$$\begin{aligned}{\tilde{A}}_4&=-6bb_4\Big (x+z+z^2+\frac{7}{8}xz-\frac{1}{4}xw\Big ) + b^2\zeta ^2 - 2b\zeta u + u^2\big (1-2x-2xz-z^2\big ), \nonumber \\{\tilde{B}}_4&=\frac{3}{8}bb_4x(10+7z-4x+2w) -\frac{3}{8}ub\zeta x + \frac{u^2}{4}x(2+z-x), \nonumber \\{\tilde{C}}_4&= \frac{1}{4}\Big (b^2\zeta ^2-2u(2-x)b\zeta + 2u^2\big (2-x-x^2\big )+\frac{3}{4}bb_4\big (4x+8w-4z+7xz-2xw-4x^2\big ), \nonumber \\{\tilde{D}}_4&=\frac{3}{2}bb_4\big (48x^2+41xz-26xw-12wz-42x+36w-24z\big ) \nonumber \\&\quad +\,4u^2\big (1-3x-z+2x^2+xz\big )-ub\zeta (3+2x+5z). \end{aligned}$$
(C5)

The notation is used:

$$\begin{aligned} \begin{array}{ccc} \displaystyle { u\equiv \frac{(1/5-J)}{2(1-J)}=\frac{1}{2}\!\left( \!1-\frac{4}{5}\,b\right) , \qquad b_4\equiv \frac{1}{120}\!\left( \frac{1}{7}+J\right) . } \end{array} \end{aligned}$$
(C6)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poluektov, Y.M., Soroka, A.A. Phonon and Optical-roton Branches of Excitations of the Bose System. J Low Temp Phys 210, 68–92 (2023). https://doi.org/10.1007/s10909-022-02885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02885-8

Keywords

Navigation