Skip to main content
Log in

Investigation of relativistic bosons in the presence of two-dimensional time-dependent harmonic interaction

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The Duffin–Kemmer–Petiau (DKP) equation has been exactly solved for the spin-one particle in the presence of time-dependent harmonic potential in a two dimensional space using the Lewis–Riesenfeld dynamical invariant and unitary transform methods. The dynamical invariant has been constructed and its eigen functions have been obtained. The total wave function as well as the evolution operator have been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Petiau, Acad. R. Belg. A. Sci. Mém. Collect 16 (2), 1 (1936).

    Google Scholar 

  2. G. Petiau, PhD Thesis (Univ. Paris, 1936); Acad. R. Belg. Cl. Sci. Mém. Collect. 8, 16 (1936).

    Google Scholar 

  3. N. Kemmer, Proc. R. Soc. A 166, 127 (1938).

    Article  ADS  Google Scholar 

  4. R. J. Duffin, Phys. Rev. 54, 1114 (1938).

    Article  ADS  Google Scholar 

  5. N. Kemmer, Proc. R. Soc. A 173, 91 (1939).

    Article  ADS  MathSciNet  Google Scholar 

  6. B. C. Clark, S. Hama, G. R. Kälbermann, R. L. Mercer, and L. Ray, Phys. Rev. Lett. 55, 592 (1985).

    Article  ADS  Google Scholar 

  7. G. Kalbermann, Phys. Rev. C 34, 2240 (1986).

    Article  ADS  Google Scholar 

  8. R. E. Kozack, B. C. Clark, S. Hama, V. K. Mishra, G. Kalbermann, R. L. Mercer, and L. Ray, Phys. Rev. C 37, 2898 (1988).

    Article  ADS  Google Scholar 

  9. R. E. Kozack, Phys. Rev. C 40, 2181 (1989).

    Article  ADS  Google Scholar 

  10. V. K. Mishra, S. Hama, B. C. Clark, R. E. Kozack, R. L. Mercer, and L. Ray, Phys. Rev. C 43, 801 (1991).

    Article  ADS  Google Scholar 

  11. B. C. Clark, R. J. Furnstahl, L. K. Kerr, J. Rusnak, and S. Hama, Phys. Lett. B 427, 231–234 (1998).

    Article  ADS  Google Scholar 

  12. Y. Nedjadi and R. C. Barrett, J. Phys. G: Nucl. Part. Phys. 19, 87–98 (1993).

    Article  ADS  Google Scholar 

  13. Y. Nedjadi, S. Ait-Tahar, and R. C. Barrett, J. Phys. A: Math. Gen. 31, 3867–3874 (1998).

    Article  ADS  Google Scholar 

  14. A. Boumali, J. Math. Phys. 49, 022302 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. Boztosun, M. Karakoc, and A. Durmus, J. Math. Phys. 47, 062301 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Boutabia-Cheraitia and T. Boudjedaa, Phys. Lett. A 338, 97–107 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Merad, Int. J. Theor. Phys. 46, 8 (2007).

    Article  Google Scholar 

  18. Y. Chargui, A. Trabelsi, and L. Chetouani, Phys. Lett. A 374, 2907–2913 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Sogut and A. Havare, J. Phys. A: Math. Theor. 43, 225204 (2010).

    Article  ADS  Google Scholar 

  20. F. Yaşuk, C. Berkdemir, A. Berkdemir, and C. Önem, Phys. Scr. 71, 340 (2005).

    Article  ADS  Google Scholar 

  21. S. A. Fulling, Aspects of Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).

    Google Scholar 

  22. G. S. Agarwal and S. A. Kumar, Phys. Rev. Lett. 67, 3665–3668 (1991).

    Article  ADS  Google Scholar 

  23. H. P. Yuen, Phys. Rev. A 13, 2226–2243 (1976).

    Article  ADS  Google Scholar 

  24. L. S. Brown, Phys. Rev. Lett. 66, 527–529 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Paul, Rev. Mod. Phys. 62, 531–540 (1998).

    Article  ADS  Google Scholar 

  26. M. Feng, K. Wang, J. Wu, and L. Shi, Phys. Lett. A 51, 230 (1997).

    Google Scholar 

  27. X. F. Wang, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 65, 165217 (2002).

    Article  ADS  Google Scholar 

  28. M. Maamache and H. Bekkar, J. Phys. A 36, L359 (2003).

    Article  Google Scholar 

  29. M. Maamache and H. Choutri, J. Phys. A 33, 6203 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  30. H. G. Oh, H. R. Lee, T. F. George, and C. I. Um, Phys. Rev. A 39, 5515–5522 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  31. H. R. Lewis and W. B. Rienesfeld, J. Math. Phys. 10, 1458 (1969).

    Article  ADS  Google Scholar 

  32. I. Guedes, Phys. Rev. A 68, 016102 (2003).

    Article  ADS  Google Scholar 

  33. S. Dey and A. Fring, Phys. Rev. D: Part. Fields 90, 084005 (2014).

    Article  ADS  Google Scholar 

  34. B. Khantoul and A. Fring, arXiv:1505.02087v1.

  35. M. Merad and S. Bensaid, J. Math. Phys. 48, 073515 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Sobhani and H. Hassanabadi, Commun. Theor. Phys. 64, 263–268 (2015).

    Article  ADS  Google Scholar 

  37. J. Wei and E. Norman, J. Math. Phys. 4, 575 (1963).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Sobhani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, H., Hassanabadi, H. Investigation of relativistic bosons in the presence of two-dimensional time-dependent harmonic interaction. Phys. Part. Nuclei Lett. 14, 83–86 (2017). https://doi.org/10.1134/S1547477116060078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477116060078

Keywords

Navigation