Skip to main content
Log in

Impact of Variable Thermal Conductivity of Thermal-Plasma-Mechanical Waves on Rotational Microelongated Excited Semiconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the presented work, the propagation of thermal-plasma-mechanical waves of an elastic microelongated semiconductor medium is studied. A novel model describes the interference between waves under the influence of a rotational field when the medium’s thermal conductivity is variable. Thermal conductivity is selected based on the temperature when the microelongated semiconductor medium is in an excited state. The microelongation parameters of the medium are taken into account according to the microelement transport processes for the micropolar-photo-thermoelasticity theory. The governing equations are investigated in two dimensions (2D) when the main quantities are taken dimensionless. To add, harmonic wave analysis is employed to obtain complete analytical solutions of the main physical fields when some boundary conditions are chosen at the medium surface. The influence of physical fields variables is analyzed and illustrated graphically for silicon (Si) material in different values of variable thermal conductivity, thermal relaxation times and rotation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(\lambda ,\,\,\mu \quad \quad \;\) :

Lame’s elastic semiconductor parameters.

\(\delta_{n} = (3\lambda + 2\mu )d_{n}\) :

The deformation potential difference

\(\underline{n}\) :

Unit vector in the direction of y-axis

\(T_{0} \;\) :

Reference temperature in its natural state

\(\hat{\gamma } = (3\lambda + 2\mu )\alpha_{{t_{1} }}\) :

The volume thermal expansion

\(\sigma_{ij}\) :

The microelongational stress tensor

\(\rho \quad \quad\) :

The density of the microelongated sample

\(\alpha_{{t_{1} }}\) :

Coefficients of linear thermal expansion

\({\text{e}}\) :

Cubical dilatation

\(C_{e}\) :

Specific heat of the microelongated material

\(K\) :

The thermal conductivity

\(D_{E}\) :

The carrier diffusion coefficient

\(\tau\) :

The photogenerated carrier lifetime

\(E_{g}\) :

The energy gap

\(e_{ij}\) :

Components of strain tensor

\(\Pi ,\Psi\) :

Two scalar functions

\(j_{0}\) :

The microinertia of microelement

\(a_{0} ,\,\alpha_{0} ,\lambda_{0} ,\lambda_{1}\) :

Microelongational material parameters

\(\tau_{0} ,\nu_{0}\) :

Thermal relaxation times

\(\varphi\) :

The scalar microelongational function

\(m_{k}\) :

Components of the microstretch vector

\(s = s_{kk}\) :

Stress tensor component

\(\delta_{ik}\) :

Kronecker delta

\(\underline{\Omega } = \Omega \underline{n}\) :

Angular velocity

References

  1. A.C. Eringen, Microcontinuum Field Theories, vol. 1 (Foundations and Solids, Springer Verlag, New York, 1999)

    Book  MATH  Google Scholar 

  2. A. C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech., 909–923, (1966).

  3. A.C. Eringen, Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Singh, Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int. J. Eng. Sci. 39(5), 583–598 (2001)

    Article  MathSciNet  Google Scholar 

  5. M. Othman, Kh. Lotfy, The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J. Comput. Theor. Nanosci. 12, 2587–2600 (2015)

    Article  Google Scholar 

  6. De. Cicco, L. Nappa, On the theory of thermomicrostretch elastic solids. J. Therm. Stress. 22(6), 565–580 (1999)

    Article  MathSciNet  Google Scholar 

  7. M. Othman, Kh. Lotfy, On the plane waves of generalized thermo-microstretch elastic half-space under three theories. Int. Comm. Heat and Mass Trans. 37(2), 192–200 (2010)

    Article  Google Scholar 

  8. Kh. Lotfy, S.M. Abo-Dahab, Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J. Comput. Theor. Nanosci. 12(8), 1709–1719 (2015)

    Article  Google Scholar 

  9. M. Othman, Kh. Lotfy, Effect of rotating on plane waves in generalized thermo-microstretch elastic solid with one relaxation time. Multidiscipline Model. Mat. and Str. 7(1), 43–62 (2011)

    Article  Google Scholar 

  10. G. Ramesh, B. Prasannakumara, B. Gireesha, M. Rashidi, Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J. Appl. Fluid Mech. 9(3), 1115–1122 (2016)

    Article  Google Scholar 

  11. M. Ezzat, M. Abd-Elaal, Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J. Franklin Inst. 334(4), 685–706 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Shaw, B. Mukhopadhyay, Periodically varying heat source response in a functionally graded microelongated medium. Appl. Math. Comput. 218(11), 6304–6313 (2012)

    MathSciNet  MATH  Google Scholar 

  13. S. Shaw, B. Mukhopadhyay, Moving heat source response in a thermoelastic micro-elongated Solid. J. Eng. Phys. Thermophys. 86(3), 716–722 (2013)

    Article  Google Scholar 

  14. P. Ailawalia, S. Sachdeva, D. Pathania, Plane strain deformation in a thermo-elastic microelongated solid with internal heat source. Int. J. Appl. Mech. Eng. 20(4), 717–731 (2015)

    Article  Google Scholar 

  15. S. Sachdeva, P. Ailawalia, Plane strain deformation in thermoelastic micro-elongated solid. Civil Environ. Res. 7(2), 92–98 (2015)

    Google Scholar 

  16. P. Ailawalia, S. Kumar, D. Pathania, Internal heat source in thermoelastic micro-elongated solid under Green Lindsay theory. J. Theor. Appl. Mech. 46(2), 65–82 (2016)

    Article  MATH  Google Scholar 

  17. M. Marin, S. Vlase, M. Paun, Considerations on double porosity structure for micropolar bodies. AIP Adv. 5(3), 037113 (2015)

    Article  ADS  Google Scholar 

  18. J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501–510 (1964)

    Google Scholar 

  19. L.B. Kreuzer, Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42, 2934 (1971)

    Article  ADS  Google Scholar 

  20. A.C. Tam, Ultrasensitive Laser Spectroscopy, pp. 1–108. Academic Press, New York (1983).

  21. A.C. Tam, Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)

    Article  ADS  Google Scholar 

  22. A.C. Tam, Photothermal Investigations in Solids and Fluids, pp. 1–33. Academic Press, Boston (1989)

  23. A. Hobinya, I. Abbas, A GN model on photothermal interactions in a two-dimensions semiconductor half space. Results in Phys 15, 102588 (2019)

    Article  Google Scholar 

  24. D.M. Todorovic, P.M. Nikolic, A.I. Bojicic, Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716 (1999)

    Article  ADS  Google Scholar 

  25. Y.Q. Song, D.M. Todorovic, B. Cretin, P. Vairac, Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 47, 1871 (2010)

    Article  MATH  Google Scholar 

  26. Kh. Lotfy, The elastic wave motions for a photothermal medium of a dual- phase-lag model with an internal heat source and gravitational field. Can J. Phys. 94, 400–409 (2016)

    Article  ADS  Google Scholar 

  27. Kh. Lotfy, A novel model of photothermal diffusion (PTD) fo polymer nano- composite semiconducting of thin circular plate. Physica B- Condenced Matter 537, 320–328 (2018)

    Article  ADS  Google Scholar 

  28. Kh. Lotfy, R. Kumar, W. Hassan, M. Gabr, Thermomagnetic effect with microtemperature in a semiconducting. Photothermal excitation medium Appl Math. Mech. Engl. Ed. 39(6), 783–796 (2018)

    Article  MATH  Google Scholar 

  29. Kh. Lotfy, M. Gabr, Response of a semiconducting infinite medium under two temperature theory with photothermal excitation due to laser pulses. Opt. Laser Technol. 97, 198–208 (2017)

    Article  ADS  Google Scholar 

  30. Kh. Lotfy, Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress. Waves in Random and Complex Med 27(3), 482–501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Kh. Lotfy, A novel model for Photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field. Sci. Rep. 9, 3319 (2019)

    Article  ADS  Google Scholar 

  32. Kh. Lotfy, Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. SILICON 11, 1863–1873 (2019)

    Article  Google Scholar 

  33. I. Abbas, F. Alzahranib, A. Elaiwb, A DPL model of photothermal interaction in a semiconductor material. Waves in Random and Complex Media 29, 328–343 (2019)

    Article  Google Scholar 

  34. A. Khamis, A. El-Bary, Kh. Lotfy, A. Bakali, Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium. Alex. Eng. J. 59(1), 1–9 (2020)

    Article  Google Scholar 

  35. A. Mahdy, Kh. Lotfy, A. El-Bary, H. Alshehri, A. Alshehri, Thermal-microstretch elastic semiconductor medium with rotation field during photothermal transport processes. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1919527

    Article  Google Scholar 

  36. Kh. Lotfy, A. El-Bary, Magneto-photo-thermo-microstretch semiconductor elastic medium due to photothermal transport process. SILICON (2021). https://doi.org/10.1007/s12633-021-01205-1

    Article  Google Scholar 

  37. N. Sarkar, A. Lahiri, Effect of fractional parameter on plane waves in a rotating elastic medium under fractional order thermoelasticity. Int. J. Appl. Mech. 4(3), 1250030 (2012)

    Article  Google Scholar 

  38. Kh. Lotfy, N. Sarkar, Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature. Mech. Time-Depend. Mater. 21, 15–30 (2017)

    Article  Google Scholar 

  39. H. Youssef, A. El-Bary, Two-Temperature Generalized Thermoelasticity with Variable Thermal Conductivity. J. Therm. Stress. 33, 187–201 (2010)

    Article  Google Scholar 

  40. H. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity. J Mech Phys Solid. 15, 299–309 (1967)

    Article  ADS  MATH  Google Scholar 

  41. A. Green, K. Lindsay, Thermoelasticity. J Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  42. M. Biot, Thermoelasticity and irreversible thermodynamics. J Appl Phys. 27, 240–253 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. H. Deresiewicz, Plane waves in a thermoelastic solid. J. Acoust. Soc. Am. 29, 204–209 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  44. P. Chadwick, I.N. Sneddon, Plane waves in an elastic solid conducting heat. J. Mech. Phys. Solids 6, 223–230 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. P. Chadwick, Thermoelasticity: the dynamic theory, in Progress in Solid Mechanics, vol. I, ed. by R. Hill, I.N. Sneddon (North-Holland, Amsterdam, 1960), pp. 263–328

    Google Scholar 

  46. D.M. Todorović, P.M. Nikolić, A.I. Bojičić, Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716–7726 (1999)

    Article  ADS  Google Scholar 

  47. A. Mandelis, M. Nestoros, C. Christofides, Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt. Eng. 36(2), 459–468 (1997)

    Article  ADS  Google Scholar 

  48. Kh. Lotfy, S.M. Abo-Dahab, R. Tantawi, N. Anwer, Thermomechanical response model of a reflection photo thermal diffusion waves (RPTD) for semiconductor medium. SILICON 12(1), 199–209 (2020)

    Article  Google Scholar 

  49. Kh. Lotfy, W. Hassan, A.A. El-Bary, Mona A. Kadry, Response of electromagnetic and Thomson effect of semiconductor mediu due to laser pulses and thermal memories during photothermal excitation. Results in Phys 16, 102877 (2020)

    Article  Google Scholar 

  50. J. Liu, M. Han, R. Wang, S. Xu, X. Wang, Photothermal phenomenon: extended ideas for thermophysical properties characterization. J. Appl. Phys. 131, 065107 (2022). https://doi.org/10.1063/5.0082014

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to Princess Nourah bint Abdulrahman University for fund this research under Researchers Supporting Project number (PNURSP2022R154) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Acknowledgment 2: The authors are thankful to Taif University. This paper was funded by Taif University Researchers Supporting Project number (TURSP-2020/16), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Lotfy.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Data Availability

The information applied in this research is ready from the authors at request.

Ethical standards

This study and all procedures performed involving human participants were in accordance with the ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sapa, S., Gepreel, K.A., Lotfy, K. et al. Impact of Variable Thermal Conductivity of Thermal-Plasma-Mechanical Waves on Rotational Microelongated Excited Semiconductor. J Low Temp Phys 209, 144–165 (2022). https://doi.org/10.1007/s10909-022-02766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02766-0

Keywords

Navigation