Skip to main content
Log in

Effect of an excited non-local microelongated semiconductor with variable thermal conductivity on the propagation of photo-thermoelastic waves

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An innovative concept of a microelongated non-local semiconductor material is developed. According to photothermal transport processes, the material is stimulated. When the thermal conductivity of the non-local medium is changed, the photo-thermoelasticity theories are used. The microelongation instance and the interference between the photothermoelastic propagation waves in the non-local medium are both described by the effective framework. When electronic and thermoelastic deformation processes are taking place, thermal conductivity may be thought of as a linear function of temperature. The dimensionless main fields are extracted using a maps converter in two dimensions (2D). The fundamental equations have been transformed into higher-order ordinary differential equations using the harmonic wave approach in accordance with the normal mode analysis. Applying a few conditions chosen from the non-local semiconductor surface yields complete solutions. With graphics, the numerical simulation results for silicon (Si) are shown. For the considered physical variables during the changing thermal conductivity and microelongation, comparisons are performed and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The information applied in this research is ready from the authors at request.

Abbreviations

\(\lambda ,\,\,\mu \quad \quad \;\) :

Lame’s elastic parameters

\(\delta_{n} = (3\lambda + 2\mu )d_{n}\) :

Deformation potential difference

\(T_{0} \;\) :

Reference temperature

\(\hat{\gamma } = (3\lambda + 2\mu )\alpha_{{t_{1} }}\) :

Volume thermal expansion

\(\sigma_{ij}\) :

Microelongational stress tensor

\(\rho \quad \quad\) :

The density

\(\alpha_{{t_{1} }}\) :

Coefficients of linear thermal expansion

\(e\) :

Strain

\(C_{e}\) :

Specific heat

\(K\) :

The thermal conductivity

\(D_{E}\) :

The carrier diffusion coefficient

\(\tau\) :

The photogenerated carrier lifetime

\(E_{g}\) :

The energy gap

\(e_{ij}\) :

Components of strain tensor

\(\Pi ,\Psi\) :

Two scalar functions

\(j_{0}\) :

The microinertia of microelement

\(a_{0} ,\,\alpha_{0} ,\lambda_{0} ,\lambda_{1}\) :

Microelongational material parameters

\(\tau_{0} ,\nu_{0}\) :

Relaxation times

\(\varphi\) :

The scalar microelongational function.

\(m_{k}\) :

Components of the microstretch vector

\(s = s_{kk}\) :

Stress tensor component

\(\delta_{ik}\) :

Kronecker delta

\(d_{n}\) :

The electronic deformation coefficient

\(\xi\) :

The length-related elastic nonlocal parameter

\(l\) :

The external characteristic length scale

\(a\) :

The internal characteristic length

\(e_{0}\) :

Non-dimensional material property

References

  • Abbas, I., Alzahranib, F., Elaiwb, A.: A DPL model of photothermal interaction in a semiconductor material. Waves Random Complex Media 29, 328–343 (2019)

    Google Scholar 

  • Ailawalia, P., Sachdeva, S., Pathania, D.: Plane strain deformation in a thermo-elastic microelongated solid with internal heat source. Int. J. Appl. Mech. Eng. 20(4), 717–731 (2015)

    Google Scholar 

  • Ailawalia, P., Kumar, S., Pathania, D.: Internal heat source in thermoelastic micro-elongated solid under Green Lindsay theory. J. Theor. Appl. Mech. 46(2), 65–82 (2016)

    MATH  Google Scholar 

  • Almoneef, A., El-Sapa, S., Lotfy, Kh., El-Bary, A., Saeed, A.: Laser short-pulse effect on thermodiffusion waves of fractional heat order for excited nonlocal semiconductor. Adv. Condens. Matter Phys. 2022, 1523059 (2022)

    Google Scholar 

  • Biot, M.: Thermoelasticity and irreversible thermodynamics. J Appl Phys. 27, 240–253 (1956)

    ADS  MathSciNet  MATH  Google Scholar 

  • Choudhuri, S.K.R.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30(3), 231–238 (2007)

    Google Scholar 

  • Chteoui, R., Lotfy, Kh., El-Bary, A., Allan, M.: Hall current effect of magnetic-optical elastic-thermal-diffusive non-local semiconductor model during electrons-holes excitation processes. Crystals 12, 1680 (2022)

    Google Scholar 

  • De Cicco, S., Nappa, L.: On the theory of thermomicrostretch elastic solids. J. Therm. Stress. 22(6), 565–580 (1999)

    MathSciNet  Google Scholar 

  • Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  • Eringen, A.C.: Theory of nonlocal thermoelasticity, International Journal of Enfineering. Science 12, 1063–1077 (1974)

    MATH  Google Scholar 

  • Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990)

    MathSciNet  MATH  Google Scholar 

  • Eringen, A.C.: Microcontinuum Field Theories: 1. Foundations and Solids. Springer, New York (1999)

    MATH  Google Scholar 

  • Ezzat, M.: A novel model of fractional thermal and plasma transfer within a non-metallic plate. Smart Struct. Syst. 27(1), 73–87 (2021)

    Google Scholar 

  • Ezzat, M.: Hyperbolic thermal-plasma wave propagation in semiconductor of organic material. Waves Random Complex Media 32(1), 334–358 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  • Ezzat, M., Abd-Elaal, M.: Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J. Franklin Inst. 334(4), 685–706 (1997)

    MathSciNet  MATH  Google Scholar 

  • Gordon, J.P., Leite, R.C.C., Moore, R.S., Porto, S.P.S., Whinnery, J.R.: Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501–510 (1964)

    Google Scholar 

  • Green, A., Lindsay, K.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    MATH  Google Scholar 

  • Gupta, M., Mukhopadhyay, S.: A study on generalized thermoelasticity theory based on non-local heat conduction model with dual-phase-lag. J. Therm. Stresses 42(9), 1123–1135 (2019)

    Google Scholar 

  • Hasselman, D., Heller, R.A.: Thermal stresses in severe environments. Plenum Press, New York (1980)

    Google Scholar 

  • Hobinya, A., Abbas, I.: A GN model on photothermal interactions in a two-dimensions semiconductor half space. Results Phys. 15, 102588 (2019)

    Google Scholar 

  • Ismail, G., Gepreel, K., Lotfy, Kh., Mahdy, A., El-Bary, A., Saeed, A.: Influence of variable thermal conductivity on thermal-plasma-elastic waves of excited microelongated semiconductor. Alex. Eng. J. 61(12), 12271–12282 (2022)

    Google Scholar 

  • Khamis, A., El-Bary, A., Lotfy, Kh., Bakali, A.: Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium. Alex. Eng. J. 59(1), 1–9 (2020)

    Google Scholar 

  • Kreuzer, L.B.: Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42, 2934 (1971)

    ADS  Google Scholar 

  • Liu, J., Han, M., Wang, R., Xu, S., Wang, X.: Photothermal phenomenon: extended ideas for thermophysical properties characterization. J. Appl. Phys. 131, 065107 (2022). https://doi.org/10.1063/5.0082014

    Article  ADS  Google Scholar 

  • Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J Mech Phys Solid. 15, 299–309 (1967)

    ADS  MATH  Google Scholar 

  • Lotfy, Kh.: The elastic wave motions for a photothermal medium of a dual-phase-lag model with an internal heat source and gravitational field. Can J. Phys. 94, 400–409 (2016)

    ADS  Google Scholar 

  • Lotfy, Kh.: A novel model of photothermal diffusion (PTD) fo polymer nano- composite semiconducting of thin circular plate. Phys. B Condenced Matter 537, 320–328 (2018)

    ADS  Google Scholar 

  • Lotfy, K.: A novel model for Photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field. Sci. Rep. 9, 3319 (2019a)

    ADS  Google Scholar 

  • Lotfy, Kh.: Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. SILICON 11, 1863–1873 (2019b)

    Google Scholar 

  • Lotfy, Kh., Abo-Dahab, S.M.: Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J. Comput. Theor. Nanosci. 12(8), 1709–1719 (2015)

    Google Scholar 

  • Lotfy, Kh., Kumar, R., Hassan, W., Gabr, M.: Thermomagnetic effect with microtemperature in a semiconducting Photothermal excitation medium. Appl. Math. Mech. Engl. Ed. 39(6), 783–796 (2018)

    MathSciNet  MATH  Google Scholar 

  • Lotfy, Kh., El-Bary, A., El-Sharif, A.: Ramp-type heating micro-temperature for a rotator semiconducting material during photo-excited processes with magnetic field. Results Phys. 19, 103338 (2020a)

    Google Scholar 

  • Lotfy, K., Hassan, W., El-Bary, A.A., Kadry, M.A.: Response of electromagnetic and Thomson effect of semiconductor mediu due to laser pulses and thermal memories during photothermal excitation. Results Phys. 16, 102877 (2020b)

    Google Scholar 

  • Mahdy, A., Lotfy, Kh., El-Bary, A., Sarhan, H.: Effect of rotation and magnetic field on a numerical-refined heat conduction in a semiconductor medium during photo-excitation processes. Eur. Phys. J. plus 136(5), 1–17 (2021a)

    Google Scholar 

  • Mahdy, A., Lotfy, Kh., Hassan, W., El-Bary, A.: Analytical solution of magneto-photothermal theory during variable thermal conductivity of a semiconductor material due to pulse heat flux and volumetric heat source. Waves Random Complex Media 31(6), 2040–2057 (2021b)

    ADS  MathSciNet  MATH  Google Scholar 

  • Mandelis, A., Nestoros, M., Christofides, C.: Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt. Eng. 36(2), 459–468 (1997)

    ADS  Google Scholar 

  • Marin, M., Vlase, S., Paun, M.: Considerations on double porosity structure for micropolar bodies. AIP Adv. 5(3), 037113 (2015)

    ADS  Google Scholar 

  • Mondal, S., Sur, A.: Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Waves Random Complex Media 31(6), 1835–1858 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  • Noda, N.: Thermal Stresses in Materials with Temperature-Dependent Properties. In: Hetnarski, R.B. (ed.) Thermal Stresses I. North-Holland, Amsterdam (1986)

    Google Scholar 

  • Othman, M., Lotfy, Kh.: On the plane waves of generalized thermo-microstretch elastic half-space under three theories. Int. Comm. Heat Mass Trans. 37(2), 192–200 (2010)

    Google Scholar 

  • Othman, M., Lotfy, Kh.: Effect of rotating on plane waves in generalized thermo-microstretch elastic solid with one relaxation time. Multidiscip. Model. Mat. Str. 7(1), 43–62 (2011)

    Google Scholar 

  • Othman, M., Lotfy, Kh.: The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J. Comput. Theor. Nanosci. 12, 2587–2600 (2015)

    Google Scholar 

  • Ramesh, G., Prasannakumara, B., Gireesha, B., Rashidi, M.: Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J. Appl. Fluid Mech. 9(3), 1115–1122 (2016)

    Google Scholar 

  • Sachdeva, S., Ailawalia, P.: Plane strain deformation in thermoelastic micro-elongated solid. Civil Environ. Res. 7(2), 92–98 (2015)

    Google Scholar 

  • Shaw, S., Mukhopadhyay, B.: Periodically varying heat source response in a functionally graded microelongated medium. Appl. Math. Comput. 218(11), 6304–6313 (2012)

    MathSciNet  MATH  Google Scholar 

  • Shaw, S., Mukhopadhyay, B.: Moving heat source response in a thermoelastic micro-elongated Solid. J. Eng. Phys. Thermophys. 86(3), 716–722 (2013)

    Google Scholar 

  • Singh, B.: Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int. J. Eng. Sci. 39(5), 583–598 (2001)

    Google Scholar 

  • Song, Y.Q., Todorovic, D.M., Cretin, B., Vairac, P.: Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 47, 1871 (2010)

    MATH  Google Scholar 

  • Tam, A.C.: Ultrasensitive Laser Spectroscopy, pp. 1–108. Academic Press, New York (1983)

    Google Scholar 

  • Tam, A.C.: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)

    ADS  Google Scholar 

  • Tam, A.C.: Photothermal Investigations in Solids and Fluids, pp. 1–33. Academic Press, Boston (1989)

    Google Scholar 

  • Todorovic, D.M., Nikolic, P.M., Bojicic, A.I.: Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716 (1999)

    ADS  Google Scholar 

  • Todorović, D.M., Nikolić, P.M., Bojičić, A.I.: Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716–7726 (1999)

    ADS  Google Scholar 

  • Tzou, D.Y.: A unified field approach for heat conduction from macro to micro-scales. J. Heat Transfer 117(1), 8–16 (1995a)

    Google Scholar 

  • Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995b)

    Google Scholar 

  • Tzou, D.Y., Guo, Z.Y.: Nonlocal behavior in thermal lagging, International. J. Therm. Sci. 49(7), 1133–1137 (2010)

    Google Scholar 

  • Youssef, H., El-Bary, A.: Two-temperature generalized thermoelasticity with variable thermal conductivity. J. Therm. Stresses 33, 187–201 (2010)

    Google Scholar 

Download references

Funding

The authors extend their appreciation to Princess Nourah bint Abdulrahman University for fund this research under Researchers Supporting Project number (PNURSP2023R154) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

KL: Conceptualization, Methodology, Software, Writing- Original draft preparation. SES: Supervision, Visualization, Investigation, Software, Validation. AEB: Writing- Reviewing and Editing, Data curation.

Corresponding author

Correspondence to Khaled Lotfy.

Ethics declarations

Conflict of interest

The authors have declared that no Competing Interests exist.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sapa, S., El-Bary, A.A. & Lotfy, K. Effect of an excited non-local microelongated semiconductor with variable thermal conductivity on the propagation of photo-thermoelastic waves. Opt Quant Electron 55, 569 (2023). https://doi.org/10.1007/s11082-023-04836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04836-3

Keywords

Navigation