Skip to main content
Log in

Moving Heat Source Response in a Thermoelastic Microelongated Solid

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The present paper deals with thermoelastic interactions in a microelongated, isotropic, homogeneous medium in the presence of a moving heat source. In this context, the generalized theory of heat conduction is considered. In order to illustrate the results obtained, a numerical solution for aluminum epoxy-like material is obtained, and the variations of the displacement, microelongation, normal strain, and normal stress are presented. The results may be applied for damage characterization of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240–253 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Kaliski, Wave equation of heat conduction, Bull. Acad. Pol. Sci., Ser. Sci. Tech., 13, 211–219 (1965).

    Google Scholar 

  3. S. Kaliski, Wave equation of thermoelasticity, Bull. Acad. Pol. Sci., Ser. Sci. Tech., 13, 253–360 (1965).

    Google Scholar 

  4. H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299–309 (1967).

    Article  MATH  Google Scholar 

  5. A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elast., 2, 1–7 (1972).

    Article  MATH  Google Scholar 

  6. A. C. Eringen and E. S. Suhubi, Nonlinear theory of simple microelastic solids, Int. J. Eng. Sci., 2, 189–203, 389–404 (1964).

    MathSciNet  Google Scholar 

  7. A. C. Eringen, Microcontinuum Field Theories, Vol. 1, Foundations and Solids, Springer Verlag, New York (1999).

    Book  Google Scholar 

  8. A. C. Eringen, Micropolar elastic solids with stretch, Ari Kitabevi Matbassi, 24, 1–18 (1971)

    Google Scholar 

  9. A. C. Eringen, Theory of thermomicrostretch elastic solids, Int. J. Eng. Sci., 28, 1291–1301 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech., 15, 909–923 (1966).

    MathSciNet  MATH  Google Scholar 

  11. A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 15, 1–18 (1966).

    Google Scholar 

  12. A. Kiris and E. Inan, Eshelby tensors for a spherical inclusion in microelongated elastic fields, Int. J. Eng. Sci., 43, 49–58 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Singh and R. Kumar, Wave propagation in a generalized thermomicrostretch elastic solid, Int. J. Eng. Sci., 36, 891–912 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. N. Sharma, S. Kumar, and Y. D. Sharma, Effect of micropolarity, microstretch and relaxation times on Rayleigh surface waves in thermoelastic solids, Int. J. Appl. Math. Mech., 5, No. 2, 17–38 (2009).

    Google Scholar 

  15. R. Quintanilla, On spatial decay for the dynamic problem of thermomicrostretch elastic solid, Int. J. Eng. Sci., 40, 299–309 (2002).

    Google Scholar 

  16. A. C. Eringen, Electromagnetic theory of microstretch elasticity and bone modeling, Int. J. Eng. Sci., 42, 231–242 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. M. Youssef, State-space in generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating, Can. Appl. Math. Qu., 13, No. 4, 369–390 (2005).

    MathSciNet  MATH  Google Scholar 

  18. H. M. Youssef, The dependence of the modulus of elasticity and thermal conductivity on the reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity, J. Appl. Math. Mech., 26, No. 4 (2005).

    Google Scholar 

  19. H. M. Youssef, Generalized thermoelastic infinite medium with spherical cavity subjected to moving heat source, Comp. Math. Mode., 21, No. 2, 211–225 (2010).

    Google Scholar 

  20. A. Kiris and E. Inan, 3-D vibration analysis of the rectangular microdamaged plates, in: Proc. 8th Int. Conf. on Vibration Problems (ICOVP), India (2007), pp. 207–214.

  21. S. De Cicco and L. Nappa, On the theory of thermomicrostretch elastic solids, J. Thermal Stresses, 22, 565–580 (1999).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shaw.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 3, pp. 671–676, May–June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, S., Mukhopadhyay, B. Moving Heat Source Response in a Thermoelastic Microelongated Solid. J Eng Phys Thermophy 86, 716–722 (2013). https://doi.org/10.1007/s10891-013-0887-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0887-y

Keywords

Navigation