Skip to main content
Log in

Control of Magnetocaloric Effect in Quantum Dots Using Electrical Field at Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we consider a quantum dot in the presence of electric and magnetic fields simultaneously. Given the importance of studying the magnetocaloric effect (MCE), we have tried to investigate MCE in this system and obtain the influence of system parameters on the MCE. For this purpose, we obtained the energy levels and eigenstates analytically. Our purpose is to study the effects of temperature and electric field on the entropy change (\(\Delta S\)). To this end, we have employed the non-extensive thermodynamic to study the MCE. We have found that the non-extensive parameter, quantum dot radius and the electric field are important factors to control the MCE. The obtained results also show that our system presents the direct MCE. Also, by applying the non-extensive thermodynamics, we cannot see the oscillating MCE at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Khordad, J. Opt. 42, 83 (2013)

    Article  Google Scholar 

  2. K.X. Guo, C.Y. Chen, T.P. Das, Opt. Quantum Electron. 33, 231 (2001)

    Article  Google Scholar 

  3. G. Wang, Phys. Rev. B 72 (2005) 155329.

  4. C.J. Zhang, K.X. Guo, Physica B 383, 183 (2006)

    Article  ADS  Google Scholar 

  5. D.B. Hayrapetyan, E.M. Kazaryan, T.V. Kotanjyan, H.K. Tevosyan, Superlattice. Microst. 78, 40 (2015)

    Article  ADS  Google Scholar 

  6. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  7. R. Khordad, H.R. Rastegar Sedehi, M. Sharifzadeh, J. Comput. Electron (2022). https://doi.org/10.1007/s10825-022-01857-1

    Article  Google Scholar 

  8. B. Boyacioglu, A. Chatterjee, J. Appl. Phys. 112, 083514 (2012)

    Article  ADS  Google Scholar 

  9. R. Khordad, Mod. Phys. Lett. B 29, 1550127 (2015)

    Article  ADS  Google Scholar 

  10. R. Khordad, H.R. Rastegar Sedehi, Solid State Commun. 269, 118 (2018)

    Article  ADS  Google Scholar 

  11. W. Yang, J.X. Sun, F. Yu, Eur. Phys. J. B 71, 211 (2009)

    Article  ADS  Google Scholar 

  12. F. Attar, R. Khordad, A. Zarifi, Int. J. Mod. Phys. C 33, 2250011 (2022)

    Article  ADS  Google Scholar 

  13. A.N. Ikot, C.O. Edet, U.S. Okorie, A.H. Abdel-Aty, M. Ramantswana, G.J. Rampho, N.A. Alshehri, S.K. Elagan, S. Kaya, Eur. Phys. J. Plus 136, 434 (2021)

    Article  Google Scholar 

  14. A.N. Ikot, U.S. Okorie, R. Sever, G.J. Rampho, Eur. Phys. J. Plus 134, 386 (2019)

    Article  Google Scholar 

  15. A. Shaer, M.K. Elsaid, M. Elhasan, Chin. J. Phys. 54, 391 (2016)

    Article  Google Scholar 

  16. F.S. Nammas, Physica E 508, 187 (2018)

    Article  Google Scholar 

  17. N.F. Johnson, M.C. Payne, Phys. Rev. Lett. 67, 1157 (1991)

    Article  ADS  Google Scholar 

  18. A. Kuros, A. Okopinska, Few-Body Syst. 56, 853 (2015)

    Article  ADS  Google Scholar 

  19. P.A. Maksym, T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990)

    Article  ADS  Google Scholar 

  20. R. Khordad, H.R. Rastegar Sedehi, J. Low Temp. Phys. 190, 200 (2018)

    Article  ADS  Google Scholar 

  21. N.S. Yahyah, M.K. Elsaid, A. Shaer, J. Theor. Appl. Phys. 13, 277 (2019)

    Article  ADS  Google Scholar 

  22. R. Khordad, A. Ghanbari, Int. J. Thermophys. 42, 115 (2021)

    Article  ADS  Google Scholar 

  23. R. Khordad, Int. J. Thermophys. 34, 1148 (2013)

    Article  ADS  Google Scholar 

  24. R. Khordad, A. Firoozi, H.R. Rastegar Sedehi, J. Low Temp. Phys. 202, 185 (2021)

    Article  ADS  Google Scholar 

  25. Y. Khoshbakht, R. Khordad, H.R. Rastegar Sedehi, J. Low Temp. Phys. 202, 59 (2021)

    Article  ADS  Google Scholar 

  26. W. Qiu, J.L. Xiao, C.Y. Cai, J. Low Temp. Phys. 198, 233 (2020)

    Article  ADS  Google Scholar 

  27. M. Habibinejad, A. Ghanbari, J. Low Temp. Phys. 203, 369 (2021)

    Article  ADS  Google Scholar 

  28. K.L. Jahan, B. Boyacioglu, A. Chatterjee, Sci. Reports 9, 15824 (2019)

    ADS  Google Scholar 

  29. C.O. Edet, A.N. Ikot, M.C. Onyeaju, U.S. Okorie, G.J. Rampho, M.L. Lekala, S. Kaya, Physica E 131, 114710 (2021)

    Article  Google Scholar 

  30. G.J. Rampho, A.N. Ikot, C.O. Edet, U.S. Okorie, Mol. Phys. 119, e1821922 (2021)

    Article  ADS  Google Scholar 

  31. C.O. Edet, A.N. Ikot, J. Low Temp. Phys. 203, 84 (2021)

    Article  ADS  Google Scholar 

  32. R. Khorad, A. Avazpour, A. Ghanbari, Chem. Phys. 517, 30 (2019)

    Article  Google Scholar 

  33. R. Khordad, A. Ghanbari, Comput. Theor. Chem. 1155, 1 (2019)

    Article  Google Scholar 

  34. M.S. Reis, Appl. Phys. Lett. 99, 052511 (2011)

    Article  ADS  Google Scholar 

  35. M.S. Reis, Appl. Phys. Lett. 101, 222405 (2012)

    Article  ADS  Google Scholar 

  36. R. Tarasenko, V. Tkac, A. Orendacova, M. Orendac, V. Valentab, V. Sechovsky, A. Feher, J. Phys. Condens. Matter. 536, 450 (2018)

    Google Scholar 

  37. Z.Z. Alisultanov, J. Appl. Phys. 115, 113913 (2014)

    Article  ADS  Google Scholar 

  38. Y.Y. Gong, D.H. Wang, Q.Q. Cao, E.K. Liu, J. Liu, Y.W. Du, Adv. Mater. 27, 801 (2014)

    Article  Google Scholar 

  39. Z.Z. Alisultanov, L.S. Paixao, M.S. Reis, Appl. Phys. Lett. 105, 232406 (2014)

    Article  ADS  Google Scholar 

  40. H.R. Rastegar Sedehi, Eur. Phys. J. Plus 136, 514 (2021)

    Article  Google Scholar 

  41. M.S. Reis, S. Soriano, Appl. Phys. Lett. 102, 112903 (2013)

    Article  ADS  Google Scholar 

  42. A. Krawiecki, K. Kacperski, S. Matyjaskiewicz, J.A. Holyst, Chaos Soliton. Fract. 18, 89 (2003)

    Article  ADS  Google Scholar 

  43. R.O. Vallejos, R.S. Mendes, L.R. da Silva, C. Tsallis, Phys. Rev. E 58, 1346 (1998)

    Article  ADS  Google Scholar 

  44. Y. Huang, G. Ouillon, H. Saleur, D. Sornette, Phys. Rev. E 55, 6433 (1997)

    Article  ADS  Google Scholar 

  45. F.A.B.F. de Moura, U. Tirnakli, M.L. Lyra, Phys. Rev. E 62, 6361 (2000)

    Article  ADS  Google Scholar 

  46. R. Khordad, H.R. Rastegar Sedehi, Superlattices Microstruct. 101, 559 (2017)

    Article  ADS  Google Scholar 

  47. F. Caruso, C. Tsallis, Phys. Rev. E 78, 021102 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  48. T. Bhattacharyya, J. Cleymans, S. Mogliacci, Phys. Rev. D 94, 094026 (2016)

    Article  ADS  Google Scholar 

  49. I.G. de Oliveira, M.M. de Araújo, E.M.C. Abreu, M.J. Neves, Mod. Phys. Lett. B. 33, 1950024 (2019)

    Article  Google Scholar 

  50. O.A. Negrete, F.J. Peña, J.M. Florez, P. Vargas, Entropy 20, 888 (2018)

    Article  ADS  Google Scholar 

  51. O.A. Negrete, F.J. Peña, J.M. Florez, P. Vargas, Entropy 20, 557 (2018)

    Article  ADS  Google Scholar 

  52. M.S. Reis, Solid State Commun. 161, 19 (2013)

    Article  ADS  Google Scholar 

  53. H.R. Rastegar Sedehi, R. Khordad, Physica E 134, 114886 (2021)

    Article  Google Scholar 

  54. H.R. Rastegar Sedehi, Eur. Phys. J. Plus. 136, 514 (2021)

    Article  Google Scholar 

  55. M.S. Atoyan, E.M. Kazaryan, H.A. Sarkisyan, Physica E 31, 83 (2006)

    Article  ADS  Google Scholar 

  56. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  57. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A. 261, 534 (1998)

    Article  ADS  Google Scholar 

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Rastegar Sedehi.

Ethics declarations

Conflict of interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this part, we present the details of calculation of energy levels. The Schrödinger equation is expressed by

$$\frac{1}{2{m}^{*}}{\left({\varvec{P}}-\frac{e}{c}{\varvec{A}}\right)}^{2}\Psi -e\epsilon z\Psi +{V}_{conf}(\mathbf{r})\Psi ={E}_{t}\Psi$$

Here,

$$V\left(r\right)=\frac{1}{2}{m}^{*}{\omega }_{0}^{2}{r}^{2}=\frac{1}{2}{m}^{*}{\omega }_{0}^{2}\left({\rho }^{2}+{z}^{2}\right)$$

In cylindrical coordinates, we have

$$-\frac{{\mathrm{\hslash }}^{2}}{2{m}^{*}}\left[\frac{1}{\uprho }\frac{\partial }{\partial\uprho }\left(\uprho \frac{\partial }{\partial\uprho } \right)+\frac{{\partial }^{2}}{\partial {z}^{2}}+\frac{1}{{\uprho }^{2}}\frac{{\partial }^{2}}{\partial {\varphi }^{2}}\right]\Psi -\frac{i\hslash {\omega }_{c}}{2}\frac{\partial\Psi }{\partial \varphi }+\frac{{m}^{*}{\Omega }^{2}{\uprho }^{2}}{8}\Psi -e\epsilon z\Psi +\frac{{m}^{*}{\omega }_{0}^{2}{\mathrm{z}}^{2}}{2}\Psi ={E}_{t}\Psi$$

here \({E}_{t}={E}_{\rho }+{E}_{z}\).

Consider the wave function as

$$\Psi \left(\rho ,\varphi ,z\right)=f(\rho ,\varphi )g(z)$$

By using the above relation, we have

$$-\frac{{\mathrm{\hslash }}^{2}}{2{m}^{*}}\left[\frac{1}{\uprho }\frac{\partial }{\partial\uprho }\left(\uprho \frac{\partial }{\partial\uprho } \right)+\frac{1}{{\uprho }^{2}}\frac{{\partial }^{2}}{\partial {\varphi }^{2}}\right]f-\frac{i\hslash {\omega }_{c}}{2}\frac{\partial f}{\partial \varphi }+\frac{{m}^{*}{\Omega }^{2}{\uprho }^{2}}{8}f={E}_{\rho }f$$
$$-\frac{{\mathrm{\hslash }}^{2}}{2{m}^{*}}\frac{{d}^{2}g}{d{z}^{2}}+\frac{{m}^{*}{\omega }_{0}^{2}{\mathrm{z}}^{2}}{2}g-e\epsilon zg={E}_{z}g$$

The solutions of the above equations are as

$$f\left(\rho ,\varphi \right)=A{e}^{im\varphi }{e}^{-\frac{{\rho }^{2}}{4{a}^{2}}}{\rho }^{\left|m\right|}F(-{n}_{\rho },\left|m\right|+1;\frac{{\rho }^{2}}{2{a}^{2}})$$
$$g\left(z\right)=B{e}^{-\frac{{m}^{*}{\omega }_{0}}{\hslash }{\left(z-{z}_{0}\right)}^{2}}{H}_{{n}_{z}}\left[\sqrt{\frac{{m}^{*}{\omega }_{0}}{\hslash }}\left(z-{z}_{0}\right)\right]$$

here \(A\) and \(B\) are the normalization constants, \(a=\sqrt{\frac{\hslash }{{m}^{*}\Omega }}\), \({z}_{0}=\frac{e\epsilon }{{m}^{*}{\omega }_{0}^{2}}\), \(F(\mu ,\lambda ;x)\) is the confluent hypergeometric function and \({H}_{n}(x)\) is the Hermite function. Also, \({n}_{\rho }\), \(m\) and \({n}_{z}\) are the quantum numbers, respectively.

Using the above wave function, the total energy is obtained as

$${E}_{{n}_{\rho },m,{n}_{z}}=\left({n}_{\rho }+\frac{\left|m\right|+1}{2} \right)\mathrm{\hslash \Omega }+\frac{m\mathrm{\hslash }{\omega }_{c}}{2}+\left({n}_{z}+\frac{1}{2} \right)\mathrm{\hslash }{\omega }_{0}-\frac{{e}^{2}{\epsilon }^{2}}{2{m}^{*}{\omega }_{0}^{2}}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegar Sedehi, H.R. Control of Magnetocaloric Effect in Quantum Dots Using Electrical Field at Low Temperatures. J Low Temp Phys 207, 241–249 (2022). https://doi.org/10.1007/s10909-022-02718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02718-8

Keywords

Navigation