Skip to main content
Log in

Simultaneous Effects of Temperature and Pressure on the Entropy and the Specific Heat of a Three-Dimensional Quantum Wire: Tsallis Formalism

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, the finite-difference time domain (FDTD) has been employed to calculate the energy levels and wave functions of a three-dimensional (3D) cylindrical quantum wire. The inside of the wire is at zero potential, and the background medium is 4.6 eV. This is a true 3D procedure based on a direct implementation of the time-dependent Schrödinger equation. Here, the dependence on the pressure and the temperature of the electronic effective mass is used. We study the effects temperature and pressure simultaneously on the entropy and the specific heat of the system using the Tsallis formalism. The results show that (i) the specific heat obtained by Tsallis has a peak structure. (ii) The entropy has almost the same values at very low temperatures with different pressures. (iii) The peak value of the specific heat with enhancing the pressure shifts toward lower temperatures. (iv) The peak value of the specific heat and its position depend on the value of the entropic index q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Sakaki, T. Sugana, J. Jpn. Soc. Appl. Phys. 44, 1131 (1975)

    Google Scholar 

  2. N. Vainorius, S. Lehmann, A. Gustafsson et al., Nano Lett. 16, 2774 (2016)

    Article  ADS  Google Scholar 

  3. L. Kinnischtzke, K.M. Goodfellow, C. Chakraborty et al., Appl. Phys. Lett. 108, 211905 (2016)

    Article  ADS  Google Scholar 

  4. M. Servatkhah, R. Khordad, Ar. Firoozi, H. R. Rastegar Sedehi, A. Mohammadi, Eur. Phys. J. B 93 (2020), 111.

  5. Y. Zhang, Y. Bando, K. Wada, K. Kurashima, Science 281, 973 (1998)

    Article  ADS  Google Scholar 

  6. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. S. Phrensen, R. Hemmer, A. S. Zibrov, M. D. Lukin, Nature. 466, 730 (2010).

    Article  ADS  Google Scholar 

  7. R. Khordad, H. R. Rastegar Sedehi, Superlatt. Microstruct. 101, 559 (2017).

    Article  ADS  Google Scholar 

  8. P. Harrison, Quantum wells, wires and dots, 2nd edn. (Wiley, Chichester, 2005)

    Book  Google Scholar 

  9. H. Mousavi, M. Bagheri, J. Khodadadi, Physica E 74, 135 (2015)

    Article  ADS  Google Scholar 

  10. R. Khordad, J. Magn. Magn. Mater. 449, 510 (2018)

    Article  ADS  Google Scholar 

  11. H. R. Rastegar Sedehi, R. Khordad, Solid State Commun. 313, 113911 (2020).

    Article  Google Scholar 

  12. R. Khordad, B. Vaseghi, Chin. J. Phys. 59, 473 (2019)

    Article  Google Scholar 

  13. R. Khordad, H. R. Rastegar Sedehi, Solid State Commun. 269, 118 (2018).

    Article  ADS  Google Scholar 

  14. M.R. Sakr, Phys. Lett. A 380, 3206 (2016)

    ADS  Google Scholar 

  15. A. Bera, M. Ghosh, Chem. Phys. Lett. 667, 103 (2017)

    Article  ADS  Google Scholar 

  16. S. Saha, J. Ganguly, A. Bera, M. Ghosh, Chem. Phys. 480, 17 (2016)

    Article  Google Scholar 

  17. J. Ganguly, S. Saha, A. Bera, M. Ghosh, Opt. Commun. 387, 166 (2017)

    Article  ADS  Google Scholar 

  18. A. Gharaati, R. Khordad, Superlatt. Microstruct. 51, 194 (2012)

    Article  ADS  Google Scholar 

  19. A. Gharaati, R. Khordad, Opt. Quant. Electron. 44, 425 (2012)

    Article  Google Scholar 

  20. E. I. Rashba, Al. L. Efors, Phys. Rev. Lett. 91, 126405 (2003).

  21. D.M. Sullivan, D.S. Citrin, J. Appl. Phys. 97, 104305 (2005)

    Article  ADS  Google Scholar 

  22. D.M. Sullivan, D.S. Citrin, J. Appl. Phys. 91, 3219 (2002)

    Article  ADS  Google Scholar 

  23. D. M. Sullivan, S. Mossman, M. G. Kuzyk, Plos One (2016)

  24. C.J. Burke, T.L. Atherton, J. Lesnefsk, R.G. Petschek, J. Opt. Soc. America B 30, 1438 (2013)

    Article  ADS  Google Scholar 

  25. M. Kuzyk, D.S. Watkins, J. Chem. Phys. 124, 244104 (2006)

    Article  ADS  Google Scholar 

  26. J. Zhou, M. Kuzyk, D.S. Watkins, Opt. Lett. 31, 2891 (2006)

    Article  ADS  Google Scholar 

  27. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  28. C. Tsallis, R.S. Mendes, A.R. Plastino, Phys. A 261, 534 (1998)

    Article  Google Scholar 

  29. A. Renyi, Probability Theory (North Holland, Amsterdam, 1970)

    MATH  Google Scholar 

  30. P.T. Landsberg, V. Vedral, Phys. Lett. A 247, 211 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Abe, C. Beck, E.G.D. Cohen, Phys. Rev. E 76, 031102 (2007)

    Article  ADS  Google Scholar 

  32. R. Khordad, Contin. Mech. Thermodyn. 28, 947 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Soriano, E.A. Navarro, J.A. Porti, V. Such, J. Appl. Phys. 95, 8011 (2004)

    Article  ADS  Google Scholar 

  34. G.B. Ren, J.M. Rorison, Phys. Rev. E 69, 036705 (2004)

    Article  ADS  Google Scholar 

  35. W. Dai, G. Li, R. Nassar, S. Su, Nummer. Meth. Part. Diff. Equ. 21, 1140 (2005)

    Article  Google Scholar 

  36. J.P. Berenger, J. Comput. Phys. 114, 185 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  37. E. P. da silva, C. Tsallis, E. M. F Curado, Physica A 199, 137 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  38. R. Khordad, H. R. Rastegar Sedehi, Eur. Phys. J. Plus 134, 133.

    Google Scholar 

  39. D. Najafi, B. Vaseghia, G. Rezaei, R. Khordad, Eur. Phys. J. Plus 134, 17 (2019)

    Article  Google Scholar 

  40. R. Khordad, B. Mirhosseini, M.M. Mirhosseini, J. Low Temp. Phys. 197, 95 (2019)

    Article  ADS  Google Scholar 

  41. D.E. Aspnes, Phys. Rev. B 14, 5331 (1976)

    Article  ADS  Google Scholar 

  42. B. Welber, M. Cardona, C.K. Kim, S. Rodriquez, Phys. Rev. B 12, 5729 (1975)

    Article  ADS  Google Scholar 

  43. H. Ehrenrich, J. Appl. Phys. 32, 2155 (1961)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Firoozi, A. & Sedehi, H.R.R. Simultaneous Effects of Temperature and Pressure on the Entropy and the Specific Heat of a Three-Dimensional Quantum Wire: Tsallis Formalism. J Low Temp Phys 202, 185–195 (2021). https://doi.org/10.1007/s10909-020-02536-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02536-w

Keywords

Navigation