Skip to main content
Log in

Effect of magnetic field on linear and nonlinear optical properties in a parabolic cylindrical quantum dot

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the present work, the optical properties of a GaAs cylindrical quantum dot in the presence of an applied magnetic field is studied. For this purpose, the effect of magnetic field on linear, nonlinear and total refractive index changes and absorption coefficients is investigated. According to the obtained results, it is found that: (i) The linear, nonlinear, and total refractive index changes increase and shift towards higher energies when the magnetic field increases. (ii) The linear, nonlinear, and total absorption coefficient increases when the magnetic field increases. Also, the resonance peak shifts towards higher energies by increasing magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Bimberg, M. Grudmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999)

    Google Scholar 

  2. M. Bouhassoune, R. Charrour, M. Fliyou, D. Bria, A. Nougaoui, Polaronic and magnetic field effects on the binding energy of an exciton in a quantum well wire. J. Appl. Phys. 91, 232–236 (2002)

    Article  ADS  Google Scholar 

  3. M. Tanaka, H. Yamada, T. Maruyama, K. Akimoto, Well-width dependence of optical properties of rare-earth ion-doped ZnS0.8Se0.2/undoped ZnS multipole. Phys. Rev. B 67, 045305–045309 (2003)

    Article  ADS  Google Scholar 

  4. B. Vaseghi, R. Khordad, M.M. Golshan, Dynamical properties of spin and subbands populations in 1D quantum wire. Phys. Status Solidi, B 243, 3772–2779 (2006)

    Article  Google Scholar 

  5. E. Kasapoglu, H. Sari, I. Sökmen, The effect of hydrostatic pressure on optical transitions in quantum-well wires. Physica B 353, 345–350 (2004)

    Article  ADS  Google Scholar 

  6. D.H. Feng, Z.Z. Xu, T.Q. Jia, X.X. Li, S.Q. Gong, Quantum size effects on exciton states in indirect-gap quantum dots. Phys. Rev. B 68, 035334–035340 (2003)

    Article  ADS  Google Scholar 

  7. R. Khordad, A. Gharaati, M. Haghparast, Polarizability of a hydrogenic donor impurity in a ridge quantum wire. Curr. Appl. Phys. 10, 199–202 (2010)

    Article  ADS  Google Scholar 

  8. J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, I. Zutic, Semiconductor spintronics. Acta Phys. Slovaca 57, 565–907 (2007)

    Article  ADS  Google Scholar 

  9. I. Zutic, J. Fabian, S. Das Sarma, Spintronics: Fundamentals andapplications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  ADS  Google Scholar 

  10. J. Fabian, I. Zutic, S. Das Sarma, Magnetic bipolar transistor. Appl. Phys. Lett. 84, 85–87 (2004)

    Article  ADS  Google Scholar 

  11. R. Dingle, W. Wiegman, C.H. Henry, Quantum states of confined carriers in very thin Al x Ga1 − x As-GaAs-Al x Ga1 − x As heterostructures. Phys. Rev. Lett. 33, 827–830 (1974)

    Article  ADS  Google Scholar 

  12. B.F. Levine, R.J. Malik, J. Walker, K.K. Choi, C.G. Bethea, D.A. Kleinman, J.M. Vandenberg, Strong 8.2 μm infrared intersubband absorption in doped GaAs/AlAs quantum well waveguides. Appl. Phys. Lett. 50, 273–275 (1987)

    Article  ADS  Google Scholar 

  13. A. Harwitt, J.S. Harris, Observation of Stark shifts in quantum well intersubband transitions. Appl. Phys. Lett. 50, 685–687 (1987)

    Article  ADS  Google Scholar 

  14. D. Ahn, S.L. Chuang, Nonlinear intersubband optical absorption in a semiconductor quantum well. J. Appl. Phys. 62, 3052–3055 (1987)

    Article  ADS  Google Scholar 

  15. T. Rappen, J. Schröder, A. Leisse, M. Wegener, Nonlinear absorption of two-dimensional magnetoexcitons in In x Ga1 − x As/In y Al1 − y As quantum wells. Phys. Rev. B 44, 13093–13096 (1991)

    Article  ADS  Google Scholar 

  16. U. Bockelmann, G. Bastard, Interband absorption in quantum wires.II.Nonzero magnetic-field case. Phys. Rev. B 45, 1700–1704 (1992)

    Article  ADS  Google Scholar 

  17. U. Bockelmann, G. Bastard, Interband absorption in quantum wires.I.Zero-magnetic-field case. Phys. Rev. B 45, 1688–1699 (1992)

    Article  ADS  Google Scholar 

  18. P.-F. Yuh, K.L. Wang, Intersubband optical absorption in coupled quantum wells under an applied electric field. Phys. Rev. B 38, 8377–8382 (1988)

    Article  ADS  Google Scholar 

  19. D.-F. Cui, Z.-H. Chen, S.-H. Pan, H.-B. Lu, G.-Z. Yang, Absorption saturation of intersubband optical transitions in GaAs/Al x Ga1 − x As multiple quantum wells. Phys. Rev. B 47, 6755–6757 (1993)

    Article  ADS  Google Scholar 

  20. M.S. Atoyan, E.M. Kazaryan, H.A. Sarkisyan, Interband light absorption in parabolic quantum dot in the presence of electrical and magnetic fields. Physica E 31, 83–85 (2006)

    Article  ADS  Google Scholar 

  21. M.S. Atoyan, E.M. Kazaryan, H.A. Sarkisyan, Direct interband light absorption in a cylindrical quantum dot in quantizing magnetic field. Physica E 22, 860–866 (2004)

    Article  ADS  Google Scholar 

  22. G. Wang, K. Guo, Interband optical absorptions in a parabolic quantum dot. Physica E 28, 14–21 (2005)

    Article  ADS  MATH  Google Scholar 

  23. S. Ünlü, İ. Karabulut, H. Safak, Linear and nonlinear intersubband optical absorption coef.cients and refractive index changes in a quantum box with finite confining potential. Physica E 33, 319–324 (2006)

    Article  ADS  Google Scholar 

  24. I. Karabulut, H. Safak, Nonlinear optical rectification in semiparabilic quantum wells with an applied electric field. Physica B 368, 82–87 (2005)

    Article  ADS  Google Scholar 

  25. R. Khordad, S. Kheiryzadeh Khaneghah, Intersubband optical absorption coefficients and refractive index changes in a V-groove quantum wire. Phys. Status Solidi, B 248, 243–249 (2011)

    Article  ADS  Google Scholar 

  26. I. Karabulut, H. Safak, M. Tomak, Nonlinear optical rectification in asymmetrical semiparabilic quantum wells. Solid State Commun. 135, 735–738 (2005)

    Article  ADS  Google Scholar 

  27. R. Khordad, B. Mirhosseini, Optical properties of GaAs/Ga1 − x Al x As ridge quantum wire: Third-harmonic generation. Opt. Commun. 285, 1233–1237 (2012)

    Article  ADS  Google Scholar 

  28. A.L. Morales, N. Raigoza, C.A. Duque, Donor-related optical absorption spectra for a GaAs-Ga0.7Al0.3As double quantum well under hydrostatic pressure and applied electric field effects. Braz. J. Phys. 36, 862–865 (2006)

    Article  ADS  Google Scholar 

  29. I. Karabulut, S. Baskoutas, Second and third harmonic generation susceptibilities of spherical quantum dots: Effects of impurities, electric field and size. J. Comput. Theoret. Nanoscien. 6, 153–156 (2009)

    Article  Google Scholar 

  30. R. Khordad, S.K. Khaneghah, Effect of pressure on intersubband optical absorption coefficients and refractive index changes in a V-groove quantum wire. Superlattices Microstruct. 47, 538–549 (2010)

    Article  ADS  Google Scholar 

  31. R. Khordad, Effects of magnetic field and geometrical size on the interband light absorption in a quantum pseudodot system. Solid State Sci. 12, 1253–1256 (2010)

    Article  ADS  Google Scholar 

  32. R. Khordad, S. Tafaroji, R. Katebi, A. Ghanbari, Optical and electronic properties of anisotropic parabolic quantum disks in the presence of tilted magnetic fields. Physica B 407, 533–538 (2012)

    Article  ADS  Google Scholar 

  33. K.J. Kuhn, G.U. Lyengar, S. Yee, Free carrier induced changes in the absorption and refraction index for intersubband optical transitions in A x Ga1 − x As/GaAs/Al x Ga1 − x As quantum well. J. Appl. Phys. 70, 5010–5015 (1991)

    Article  ADS  Google Scholar 

  34. D.E. Aspnes, GaAs lower conduction-band minima:Ordering and properties. Phys. Rev. B 14, 5331–5343 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khordad, R. Effect of magnetic field on linear and nonlinear optical properties in a parabolic cylindrical quantum dot. J Opt 42, 83–91 (2013). https://doi.org/10.1007/s12596-012-0104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-012-0104-y

Keywords

Navigation