Skip to main content
Log in

A Thermal Model for Low Temperature \(\hbox {TeO}_{2}\) Calorimeters

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we present the application of a simplified thermal model in order to extract some of the fundamental parameters needed to understand the response function of low-temperature calorimeters consisting of \(\hbox {TeO}_{2}\) crystals read-out by neutron transmutation doped (NTD) thermistors operated at temperatures \(T \sim 10\) mK. To this aim, four detectors were hosted in two different holders, one made of copper and the other made of Stratasys \(\hbox {VeroClear}^{TM}\), a 3D-printed plastic material very similar to acrylic. The static characterization of the detectors through the analysis of their load curves at different temperatures, guided by the thermal model, enabled the identification of the main thermal link to the heat sink of the two systems: the glue between the crystal and the copper frame (scaling as \(T^3\)) for the detectors in the copper holder, and the NTD gold read-out wires (scaling as \(T^{2.5}\)) for the detectors in the plastic holder. As a subdominant contribution, we could also extract the electron–phonon decoupling characteristic of our NTDs, described by a thermal conductance scaling as \(T^4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from [14]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ed.C. Enss, Cryogenic Particle Detection (Springer, Berlin, 2005)

    Book  Google Scholar 

  2. C. Enss, D. McCammon, Physical principles of low temperature detectors: ultimate performance limits and current detector capabilities. J. Low Temp. Phys. 151, 5–24 (2008)

    Article  ADS  Google Scholar 

  3. S. Pirro, P. Mauskopf, Advances in bolometer technology for fundamental physics. Annu. Rev. Nucl. Part. Sci. 67, 161–181 (2017)

    Article  ADS  Google Scholar 

  4. M. Barucci, C. Brofferio, A. Giuliani, E. Gottardi, I. Peroni, G. Ventura, Measurement of low temperature specific heat of crystalline TeO\(_2\) for the optimization of bolometric detectors. J. Low Temp. Phys. 123(5–6), 303–314 (2001)

    Article  ADS  Google Scholar 

  5. E.E. Haller, N.P. Palaio, M. Rodder, W.L. Hansen, E. Kreysa, NTD Germanium: A Novel Material for Low Temperature Bolometers (Springer US, Berlin, 1984), pp. 21–36

    Google Scholar 

  6. E.E. Haller, Advanced far-infrared detectors. Infrared Phys. Technol. 35(213), 127–146 (1994)

    Article  ADS  Google Scholar 

  7. N.F. Mott, J.H. Davies, Metal-insulator transition in doped semiconductors. Philos. Mag. B 42(6), 845–858 (1980)

    Article  ADS  Google Scholar 

  8. A.L. Efros, B.I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C Solid State 8(4), L49–L51 (1975)

    Article  ADS  Google Scholar 

  9. A.L. Woodcraft, R.V. Sudiwala, E. Wakui. Measurement of anomalous resistance-temperature relation for neutron transmutation doped germanium, in AIP Conference Proceedings, vol. 605(99) (2002)

  10. A.L. Woodcraft, R.V. Sudiwala, E. Wakui, C. Paine, Hopping conduction in NTD germanium: comparison between measurement and theory. J. Low Temp. Phys. 134(3/4), 925–944 (2004)

    Article  ADS  Google Scholar 

  11. M. Barucci, J. Beeman, E. Olivieri, E. Pasca, L. Risegari, G. Ventura, Electrical characteristics of heavily doped NTD Ge at very low temperatures. Physica B 368, 139–142 (2005)

    Article  ADS  Google Scholar 

  12. F. Pobell, Matter and Methods at Low Temperatures (Springer, Berlin, 2007)

    Book  Google Scholar 

  13. B.K. Ridley, Hot electrons in semiconductors. Sci. Prog. 70(3), 425–459 (1986)

    Google Scholar 

  14. I. Nutini, The CUORE Experiment: Detector Optimization and Modelling and CPT Conservation Limit. PhD thesis, SISSA, Trieste (2019)

  15. G. Ventura, L. Risegari, The Art of Cryogenics (Elsevier, Amsterdam, 2008)

    Google Scholar 

  16. R.J. Soulen, W.E. Fogle, J.H. Colwell, Measurements of absolute temperature below 0.75 K using a Josephson-junction noise thermometer. J. Low Temp. Phys. 94, 385–487 (1994)

    Article  ADS  Google Scholar 

  17. D. McCammon, Semiconductor thermistors. Appl. Phys. 99, 35–61 (2005)

    Article  Google Scholar 

  18. P. Stefanyi, R. Rentzsch, P. Fozooni, C.C. Zammit, M.J. Lea, J. Saunders, Electron-phonon interaction in NTD Ge irradiated in 1980, in Phonon Scattering in Condensed Matter VII. ed. by M. Meissner, R.O. Pohl (Springer, Berlin, 1993)

    Google Scholar 

  19. J. Soudee, Hot electrons effect in a #23 NTD Ge sample. J. Low Temp. Phys. 110, 1013–1027 (1998)

    Article  ADS  Google Scholar 

  20. J. Zhang, W. Cui, M. Juda, D. McCammon, R.L. Kelley, S.H. Moseley, C.K. Stahle, A.E. Szymkowiak, Non-Ohmic effects in hopping conduction in doped silicon and germanium between 0.05 and 1 K. Phys. Rev. B 57(8), 4472 (1997)

    Article  ADS  Google Scholar 

  21. W.A. Little, The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334 (1959)

    Article  ADS  Google Scholar 

  22. A. Alessandrello et al., Development and optimization of a modular bolometer to search for rare decays. Czechoslov. J. Phys. 46, 2893–2894 (1996)

    Article  Google Scholar 

Download references

Funding

This work was supported by Istituto Nazionale di Fisica Nucleare (INFN) and by Università degli Studi di Milano–Bicocca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Quitadamo.

Ethics declarations

Conflicts of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biassoni, M., Brofferio, C., Carniti, P. et al. A Thermal Model for Low Temperature \(\hbox {TeO}_{2}\) Calorimeters. J Low Temp Phys 206, 80–96 (2022). https://doi.org/10.1007/s10909-021-02639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02639-y

Keywords

Navigation