Skip to main content
Log in

Physical Principles of Low Temperature Detectors: Ultimate Performance Limits and Current Detector Capabilities

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The rapid development of low temperature thermal detectors since the early 1980s has resulted in remarkable improvements in the sensitivity and precision of many types of measurements. We will discuss the operating principles of these detectors in the most general possible terms. We will try to show how the physics of some popular thermometer systems introduces performance limits, and how the different figures of merit and optimizations that result affect various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Langley, in Proceedings of the American Academy of Arts and Sciences XVI (1881)

  2. P. Curie, A. Laborde, Compt. Rend. 136, 673 (1903)

    Google Scholar 

  3. F. Simon, Nature 135, 763 (1935)

    Article  ADS  Google Scholar 

  4. D. Andrews, R. Fowler, M. Williams, Phys. Rev. 76, 154 (1949)

    Article  ADS  Google Scholar 

  5. E. Fiorini, T. Niinikoski, Nucl. Instrum. Methods 224, 83 (1984)

    Article  Google Scholar 

  6. S.H. Moseley, J.C. Mather, D. McCammon, J. Appl. Phys. 56, 1257 (1984)

    Article  ADS  Google Scholar 

  7. A. Drukier, L. Stodolsky, Phys. Rev. D 30, 2295 (1984)

    Article  ADS  Google Scholar 

  8. P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817 (2003)

    Article  ADS  Google Scholar 

  9. P. Lerch, A. Zehnder, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005), pp. 217–257

    Google Scholar 

  10. K. Pretzl, Nucl. Instrum. Methods A 454, 114 (2000)

    Article  ADS  Google Scholar 

  11. J.S. Adams, Y.H. Huang, Y.H. Kim, R.E. Lanou, H.J. Maris, G.M. Seidel, Nucl. Instrum. Methods A 444, 51 (2000)

    Article  ADS  Google Scholar 

  12. F. Mayet, D. Santos, G. Perrin, Yu.M. Bunkov, H. Godfrin, Nucl. Instrum. Methods A 455, 554 (2000)

    Article  ADS  Google Scholar 

  13. D. McCammon, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005), pp. 1–34

    Google Scholar 

  14. D.J. Fixsen et al., in Low Temperature Detectors, ed. by F.S. Porter et al. Proc. LTD-9 (AIP, New York, 2002), p. 339

    Google Scholar 

  15. D.J. Fixsen, S.H. Moseley, B. Cabrera, E. Figueroa-Feliciano, Nucl. Instrum. Methods A 520, 555 (2004)

    Article  ADS  Google Scholar 

  16. A. Fleischmann, Adv. Solid State Phys. 41, 577 (2001)

    Article  ADS  Google Scholar 

  17. K. Irwin, Appl. Phys. Lett. 66, 1998 (1995)

    Article  ADS  Google Scholar 

  18. J.E. Vaillancourt, Rev. Sci. Instrum. 76, 043107 (2005)

    Article  ADS  Google Scholar 

  19. M.A. Lindeman et al., Rev. Sci. Instrum. 78, 043105 (2007)

    Article  ADS  Google Scholar 

  20. A. Fleischmann, C. Enss, G.M. Seidel, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005), pp. 151–216

    Google Scholar 

  21. P.G. de Gennes, C. R. Acad. Sci. 247, 1836 (1966)

    Google Scholar 

  22. C. Enss, A. Fleischmann, K. Horst, J. Schönefeld, J. Sollner, J.S. Adams, Y.H. Huang, Y.H. Kim, G.M. Seidel, J. Low Temp. Phys. 121, 137 (2000)

    Article  Google Scholar 

  23. B.L. Zink, K.D. Irwin, G.C. Hilton, D.P. Pappas, J.N. Ullom, M.E. Huber, Nucl. Instrum. Methods B 520, 52 (2003)

    Google Scholar 

  24. F.J. Low, J. Opt. Soc. Am. 51, 1300 (1961)

    Article  ADS  Google Scholar 

  25. J. Zhang et al., Phys. Rev. B 48, 2312 (1993)

    Article  ADS  Google Scholar 

  26. D. McCammon, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005), pp. 35–61

    Google Scholar 

  27. N. Wang et al., Phys. Rev. B 41, 3761 (1990)

    Article  ADS  Google Scholar 

  28. J. Zhang et al., Phys. Rev. B 57, 4472 (1998)

    Article  ADS  Google Scholar 

  29. K.D. Irwin, G.C. Hilton, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005), pp. 63–149

    Google Scholar 

  30. N. Iyomoto et al., Personal communication, 2007

  31. D. McCammon, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005), p. 59

    Google Scholar 

  32. L. Fleischmann et al., in preparation

  33. R.W. Romani et al., Astrophys. J. 563, 221 (2001)

    Article  ADS  Google Scholar 

  34. J. Ullom et al., Personal communication, 2007

  35. C. Arnaboldi et al., Phys. Rev. Lett. 91, 161802 (2003)

    Article  ADS  Google Scholar 

  36. C. Arnaboldi et al., Phys. Rev. Lett. 95, 142501 (2005)

    Article  ADS  Google Scholar 

  37. P.A. Voytas et al., Phys. Rev. Lett. 88, 012501 (2003)

    Article  ADS  Google Scholar 

  38. H. Rotzinger, Ph.D. Thesis, Heidelberg, 2006

  39. P. Egelhof, S. Kraft-Bermuth, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005), pp. 469–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Enss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enss, C., McCammon, D. Physical Principles of Low Temperature Detectors: Ultimate Performance Limits and Current Detector Capabilities. J Low Temp Phys 151, 5–24 (2008). https://doi.org/10.1007/s10909-007-9611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9611-7

Keywords

PACS

Navigation