Skip to main content
Log in

Experimental Study of Classical and Quantum Internal Friction in Solid 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We measured the dissipation resulting from internal friction in hcp solid 4He at temperatures between 0.8 K and 2.5 K. Solid 4He is contained inside an annular metal cell forming a part of a torsional oscillator. An oscillatory motion of the cell walls applies shear stress on the solid 4He. The resulting shear strain within the solid 4He generates dissipation because of the internal friction. The experimental sensitivity was high enough to detect dissipation caused by internal friction associated with elementary excitations of the solid. At temperatures below 1.6 K, internal friction is associated with diffusion of single point defects responsible for the climb of dislocations. At higher temperatures, the main mechanism of internal friction appears to be associated with phonon exchange between parts of the solid moving relative to each other under the applied shear stress. This particular dissipative mechanism was called “quantum phonon friction” [Popov in Phys. Rev. Lett. 83:1632–1635, 1999]. The physical mechanism associated with this type of friction involves an irreversible transfer of momentum from the phonons to the lattice via an Umklapp process. Our data are in a very good agreement with this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.L. Popov, Phys. Rev. Lett. 83, 1632–1635 (1999)

    Article  ADS  Google Scholar 

  2. D. Aleinikava, E. Edits, A. Kuklov, J. Low Temp. Phys. 162, 464 (2010)

    Article  ADS  Google Scholar 

  3. A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. B 90, 184508 (2014)

    Article  ADS  Google Scholar 

  4. E. Borda, Wei Cai, M. de Koning, Phys. Rev. Lett. 117, 045301 (2016)

    Article  ADS  Google Scholar 

  5. E. Kim, M.H.W. Chan, Nature 427, 225 (2004)

    Article  ADS  Google Scholar 

  6. D.Y. Kim, M.H.W. Chan, Phys. Rev. Lett. 109, 155301 (2012)

    Article  ADS  Google Scholar 

  7. L.S. Levitov, Europhys. Lett. 8, 499–504 (1989)

    Article  ADS  Google Scholar 

  8. J. Day, J. Beamish, Nature 450, 853 (2007)

    Article  ADS  Google Scholar 

  9. Ye. Vekhov, W.J. Mullin, R.B. Hallock, Phys. Rev. Lett. 113, 035302 (2014)

    Article  ADS  Google Scholar 

  10. Z.G. Cheng, J. Beamish, Phys. Rev. Lett. 117, 025301 (2016)

    Article  ADS  Google Scholar 

  11. F. Tsuruoka, Y. Hiki, PRB 20, 2702 (1979)

    Article  ADS  Google Scholar 

  12. M.A. Paalanen, D.J. Bishop, H.W. Dail, Phys. Rev. Lett. 46, 664 (1981)

    Article  ADS  Google Scholar 

  13. I. Iwasa, H. Kojima, PRB 102, 214101 (2020)

    Article  ADS  Google Scholar 

  14. A. Haziot, A.D. Fefferman, J.R. Beamish, S. Balibar, Phys. Rev. B 87, 060509(R) (2013)

    Article  ADS  Google Scholar 

  15. A. Granato, K. Lucke, J. Appl. Phys. 27, 583 (1956)

    Article  ADS  Google Scholar 

  16. T. Markovitz, E. Polturak, J. Low Temp. Phys. 123, 53 (2001)

    Article  ADS  Google Scholar 

  17. O. Pelleg, M. Shay, S. Lipson, E. Polturak, J. Bossy, J.C. Marmeggi, H. Kentaro, E. Farhi, A. Stunault, Phys. Rev. B 73, 024301 (2006)

    Article  ADS  Google Scholar 

  18. C.A. Burns, N. Mulders, L. Lurio, M.H.W. Chan, A. Said, C.N. Kodituwakku, P.M. Platzman, Phys. Rev. B 78, 224305 (2008)

    Article  ADS  Google Scholar 

  19. E.L. Andronikashvili, Zh. Eksp, Teor. Fiz. 16, 780 (1946)

    Google Scholar 

  20. J.E. Berthold, D.J. Bishop, J.D. Reppy, Phys. Rev. Lett. 39, 348 (1977)

    Article  ADS  Google Scholar 

  21. D.J. Bishop, J.D. Reppy, Phys. Rev. Lett. 40, 1727–1730 (1978)

    Article  ADS  Google Scholar 

  22. X. Mi, A. Eyal, A.V. Talanov, J.D. Reppy, PNAS 113, E3203 (2016)

    Article  Google Scholar 

  23. A. Danzig, Thesis, Technion (2020).

  24. O. Scaly, Thesis, Technion (2018).

  25. E. Livne, A. Eyal, O. Scaly, E. Polturak, J. Low Temp. Phys. 180, 185 (2015)

    Article  ADS  Google Scholar 

  26. A. Eyal, E. Livne, E. Polturak, J. Low Temp. Phys. 183, 31 (2016)

    Article  ADS  Google Scholar 

  27. Hirth, J. P. & Lothe, J. Theory of dislocations. (McGraw-Hill, 1967).

  28. A. Suhel, J.R. Beamish, Phys. Rev. B 84, 094512 (2011)

    Article  ADS  Google Scholar 

  29. A. Kuklov, E. Polturak, N. Prokof’ev and B. Svistunov, https://arxiv.org/abs/2103.08011.

  30. A.I. Volokitin, B.N.J. Persson, H.J. Ueba, Exp. Theor. Phys. 104, 96 (2007)

    Article  ADS  Google Scholar 

  31. V.I. Al’shits, V.L. Indenbom, Uspekhi Fiz. Nauk 115, 3 (1975)

    Article  Google Scholar 

  32. A. Haziot, A.D. Fefferman, J.R. Beamish, S. Balibar, Phys. Rev B 87, 060509(R) (2013)

    Article  ADS  Google Scholar 

  33. G. Ahlers, Phys. Rev. A 2, 1505 (1970)

    Article  ADS  Google Scholar 

  34. I. Iwasa, K. Araki, H. Suzuki, J. Phys. Soc. Jpn. 46, 1119 (1979)

    Article  ADS  Google Scholar 

  35. P. Berberieh, P. Leiderer, S. Hunklinger, J. Low Temp. Phys. 22, 61 (1976)

    Article  ADS  Google Scholar 

  36. I. Iwasa, H. Suzuki, J. Phys. Soc. Jap. 49, 1722 (1980)

    Article  ADS  Google Scholar 

  37. H.J. Maris, Phys. Acoust. 8, 279 (1971)

    Article  Google Scholar 

  38. A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374–456 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a great pleasure to be able to contribute to the special issue of JLTP honoring David Lee and John Reppy, two of the most prominent members of the Low Temperature Physics community. Their contribution to science is outstanding not only because of the many discoveries they made, but also for turning (with Bob Richardson) the Low Temperature Lab at Cornell into a vibrant hub of low temperature physics which continued as such over several decades. A generation of researchers from all over the world, educated in this lab, went on to spread this tradition of excellence within the Low Temperature Physics community. One of us (E.P.) had the good fortune to spend time in this laboratory and enjoy its special atmosphere. We extend our best wishes to David and John, and may they enjoy good health and many happy events in the years to come.

Funding

At the local level, we thank S. Hoida and L. Yumin for assistance and L. Melnikovsky and A. Kuklov for fruitful discussion. This work was supported by the Israel Science Foundation and by the Technion Fund for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Polturak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danzig, A., Scaly, O. & Polturak, E. Experimental Study of Classical and Quantum Internal Friction in Solid 4He. J Low Temp Phys 205, 253–262 (2021). https://doi.org/10.1007/s10909-021-02620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02620-9

Keywords

Navigation