Skip to main content
Log in

Observation of a Dislocation-Related Interfacial Friction Mechanism in Mobile Solid \(^{4}\)He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report a study of the temperature and stress dependence of the friction associated with a relative motion of crystallites of solid \(^{4}\)He in contact with each other. A situation where such motion exists emerges spontaneously during a disordering of a single crystal contained inside an annular sample space of a torsional oscillator (TO). Under the torque applied by the oscillating walls of the TO these crystallites move relative to each other, generating measurable dissipation at their interface. We studied this friction between 0.5 and 1.8 K in solid samples grown from commercially pure \(^{4}\)He and from a 100 ppm \(^{3}\)He–\(^{4}\)He mixture. The data were analyzed by modeling the TO as a driven harmonic oscillator. In this model, an analysis of the resonant frequency and amplitude of the TO yields the temperature dependence of the friction coefficient. By fitting the data to specific forms, we found that over our temperature range, the dominant friction mechanism associated with the interfacial motion of the crystallites results from climb of individual dislocations. The characteristic energy scale associated with this friction can be 3 or 6 K, depending on the sample. The motion of the solid in the presence of such friction can perhaps be described as the low limit of “slip–stick” motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Kim, M.H.W. Chan, Nature 427, 225 (2004)

    Article  ADS  Google Scholar 

  2. D.Y. Kim, M.H.W. Chan, Phys. Rev. Lett. 109, 155301 (2012)

    Article  ADS  Google Scholar 

  3. X. Mi, A. Eyal, A.V. Talanov, J.D. Reppy, arXiv:1407.1515

  4. G. Nichols, M. Poole, J. Nyeki, J. Saunders, B. Cowan, arXiv:1311.3110

  5. J. Day, J. Beamish, Nature 450, 853 (2007)

    Article  ADS  Google Scholar 

  6. A. Haziot, A.D. Fefferman, F. Souris, J.R. Beamish, H.J. Maris, S. Balibar, Phys. Rev. B 88, 014106 (2013)

    Article  ADS  Google Scholar 

  7. X. Rojas, A. Haziot, V. Bapst, H.J. Maris, S. Balibar, Phys. Rev. Lett. 105, 145302–145305 (2010)

    Article  ADS  Google Scholar 

  8. A. Haziot, X. Rojas, A.D. Fefferman, J.R. Beamish, S. Balibar, Phys. Rev. Lett. 110, 035301 (2013)

    Article  ADS  Google Scholar 

  9. J.B. Pendry, New J. Phys. 12, 03302814 (2010)

    Google Scholar 

  10. V.L. Popov, Phys. Rev. Lett. 83, 1632 (1999)

    Article  ADS  Google Scholar 

  11. M.A. Paalanen, D.J. Bishop, H. Dail, Phys. Rev. Lett. 46, 664 (1981)

    Article  ADS  Google Scholar 

  12. F. Tsuruoka, Y. Hiki, Phys. Rev. B 20, 2702 (1979)

    Article  ADS  Google Scholar 

  13. A. Eyal, O. Pelleg, L. Embon, E. Polturak, Phys. Rev. Lett. 105, 025301 (2010)

    Article  ADS  Google Scholar 

  14. A. Eyal, E. Polturak, J. Low Temp. Phys. 163, 262 (2011)

    Article  ADS  Google Scholar 

  15. A. Eyal, E. Polturak, J. Low Temp. Phys. 168, 117 (2012)

    Article  ADS  Google Scholar 

  16. E. Livne, A. Eyal, O. Scaly, E. Polturak, J. Low Temp. Phys. 180, 185 (2015). arXiv:1504.01518

  17. O. Pelleg, M. Shay, S.G. Lipson, E. Polturak, J. Bossy, J.C. Marmeggi, K. Horibe, E. Farhi, A. Stunault, Phys. Rev. B 73, 024301 (2006)

    Article  ADS  Google Scholar 

  18. C.A. Burns, N. Mulders, L. Lurio, M.H.W. Chan, A. Said, C.N. Kodituwakku, P.M. Platzman, Phys. Rev. B 78, 224305 (2008)

    Article  ADS  Google Scholar 

  19. A.C. Clark, J.D. Maynard, M.H.W. Chan, Phys. Rev. B 77, 184513 (2008)

    Article  ADS  Google Scholar 

  20. H. Maris, S. Balibar, J. Low Temp. Phys. 162, 12 (2011)

    Article  ADS  Google Scholar 

  21. A.B. Kuklov, L. Pollet, N. Prokof’ev, B. Svistunov, Phys. Rev. B 90, 184508 (2014)

    Article  ADS  Google Scholar 

  22. E. Kim, M.H.W. Chan, Science 305, 1941 (2004)

    Article  ADS  Google Scholar 

  23. Y. Aoki, J.C. Graves, H. Kojima, Phys. Rev. Lett. 99, 015301 (2007)

    Article  ADS  Google Scholar 

  24. B. Hunt, E. Pratt, V. Gadagkar, M. Yamashita, A.V. Balatsky, J.C. Davis, Science 324, 632 (2009)

    Article  ADS  Google Scholar 

  25. J.D. Reppy, Phys. Rev. Lett. 104, 255301 (2010)

    Article  ADS  Google Scholar 

  26. S. Sasaki, F. Caupin, S. Balibar, J. Low Temp. Phys. 153, 43 (2008)

    Article  ADS  Google Scholar 

  27. O. Syshchenko, J. Day, J. Beamish, Phys. Rev. Lett. 104, 195301 (2010)

    Article  ADS  Google Scholar 

  28. F.R.N. Nabarro, Theory of Crystal Dislocations, Ch. 7 (Clarendon Press, Oxford, 1967)

    Google Scholar 

  29. J.P. Hirth, J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968)

    Google Scholar 

  30. A. Suhel, J.R. Beamish, Phys. Rev. B 84, 094512 (2011)

    Article  ADS  Google Scholar 

  31. A. Kis, K. Jensen, S. Aloni, W. Mickelson, A. Zettl, Phys. Rev. Lett. 97, 025501 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge useful discussions with L. A. Melnikovsky. We thank A. Danzig, O. Scaly, S. Hoida, and L. Yumin for their assistance. This work was supported by a Grant #1089/13 from the Israel Science Foundation and by the Technion Fund for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Polturak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyal, A., Livne, E. & Polturak, E. Observation of a Dislocation-Related Interfacial Friction Mechanism in Mobile Solid \(^{4}\)He. J Low Temp Phys 183, 31–40 (2016). https://doi.org/10.1007/s10909-016-1495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1495-y

Keywords

Navigation