Skip to main content
Log in

Glide and Superclimb of Dislocations in Solid 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Glide and superclimb—climb assisted by superfluidity along dislocation core—of quantum dislocations are studied by Monte Carlo simulations of the effective string model subjected to Peierls potential, tilting and external force. Close to critical stresses, corresponding to creation of kink-antikink pairs, gliding non-tilted dislocation exhibits resonant roughening. At finite tilts gliding dislocation remains quantum rough which leads to effective softening of dislocation tension and, consequently, to softening of shear modulus at low temperatures (T). This effect is interpreted as (quasi) Bose-Einstein condensation of extra kinks introduced by tilting. For superclimbing dislocation, at T where the core superfluidity still persists and Peierls barrier becomes irrelevant giant values of the compressibility as well as non-Luttinger type behavior of the core superfluid are observed. Crossover to standard Luttinger liquid occurs at low T where Peierls potential becomes relevant. Tilted superclimb is discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kim, M.H.W. Chan, Nature 427, 225 (2004)

    Article  ADS  Google Scholar 

  2. E. Kim, M.H.W. Chan, Science 305, 1941 (2004)

    Article  ADS  Google Scholar 

  3. A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969)

    ADS  Google Scholar 

  4. D.J. Thouless, Ann. Phys. 52, 403 (1969)

    Article  ADS  Google Scholar 

  5. G.V. Chester, Phys. Rev. A 2, 256 (1970)

    Article  ADS  Google Scholar 

  6. M. Boninsegni et al., Phys. Rev. Lett. 96, 105301 (2006)

    Article  ADS  Google Scholar 

  7. B.K. Clark, D.M. Ceperley, Phys. Rev. Lett. 96, 105302 (2006)

    Article  ADS  Google Scholar 

  8. M. Boninsegni et al., Phys. Rev. Lett. 97, 080401 (2006)

    Article  ADS  Google Scholar 

  9. S. Balibar, F. Caupin, J. Phys., Condens. Matter 20, 173201 (2008)

    Article  ADS  Google Scholar 

  10. S.I. Shevchenko, Sov. J. Low Temp. Phys. 13, 61 (1987)

    Google Scholar 

  11. L. Pollet et al., Phys. Rev. Lett. 98, 135301 (2007)

    Article  ADS  Google Scholar 

  12. M. Boninsegni et al., Phys. Rev. Lett. 99, 035301 (2007)

    Article  ADS  Google Scholar 

  13. L. Pollet et al., Phys. Rev. Lett. 101, 269901 (2008)

    Article  ADS  Google Scholar 

  14. S.G. Söyler et al., Phys. Rev. Lett. 103, 175301 (2009)

    Article  ADS  Google Scholar 

  15. V.M. Nabutovskii, V.Ya. Shapiro, Sov. Phys. JETP 48, 480 (1978)

    ADS  Google Scholar 

  16. A.T. Dorsey et al., Phys. Rev. Lett. 96, 055301 (2006)

    Article  ADS  Google Scholar 

  17. J. Toner, Phys. Rev. Lett. 100, 035302 (2008)

    Article  ADS  Google Scholar 

  18. M. Boninsegni et al., Phys. Rev. Lett. 96, 105301 (2006)

    Article  ADS  Google Scholar 

  19. G. Biroli et al., Phys. Rev. B 78, 224306 (2008)

    Article  ADS  Google Scholar 

  20. Z. Nussinov, Physics 1, 40 (2008)

    Article  MathSciNet  Google Scholar 

  21. J. Friedel, Dislocations (Pergamon, New York, 1964)

    MATH  Google Scholar 

  22. J. Day, J. Beamish, Nature 450, 853 (2007)

    Article  ADS  Google Scholar 

  23. J. Day, O. Syshchenko, J. Beamish, Phys. Rev. B 79, 214524 (2009)

    Article  ADS  Google Scholar 

  24. M.W. Ray, R.B. Hallock, Phys. Rev. Lett. 100, 235301 (2008)

    Article  ADS  Google Scholar 

  25. M.W. Ray, R.B. Hallock, Phys. Rev. B 79, 224302 (2009)

    Article  ADS  Google Scholar 

  26. D. Aleinikava et al., Europhys. Lett. 89, 46002 (2010). arXiv:0812.0983

    Article  ADS  Google Scholar 

  27. M. Wallin et al., Phys. Rev. B 49, 12115 (1994)

    Article  ADS  Google Scholar 

  28. N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. Lett. 87, 160601 (2001)

    Article  ADS  Google Scholar 

  29. J.P. Hirth, J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968)

    Google Scholar 

  30. A.M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices (Wiley, New York, 2005)

    Book  Google Scholar 

  31. A. Granato, K. Lücke, J. Appl. Phys. 27, 583 (1956)

    Article  MATH  ADS  Google Scholar 

  32. A. Granato, K. Lücke, J. Appl. Phys. 27, 789 (1956)

    Article  ADS  Google Scholar 

  33. J. Lothe, J.P. Hirth, Phys. Rev. 115, 543 (1959)

    Article  MATH  ADS  Google Scholar 

  34. B.V. Petukhov, V.L. Pokrovskii, J. Exp. Theor. Phys. 36, 336 (1973)

    ADS  Google Scholar 

  35. X. Rojas et al., Phys. Rev. Lett. 105, 145302 (2010)

    Article  ADS  Google Scholar 

  36. X. Rojas et al., J. Low Temp. Phys. 158, 478 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kuklov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleinikava, D., Dedits, E. & Kuklov, A.B. Glide and Superclimb of Dislocations in Solid 4He. J Low Temp Phys 162, 464–475 (2011). https://doi.org/10.1007/s10909-010-0288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0288-y

Keywords

Navigation