Skip to main content
Log in

Oscillating Quantum Droplets From the Free Expansion of Logarithmic One-dimensional Bose Gases

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We analyse some issues related to the stability and free expansion of a one-dimensional logarithmic Bose–Einstein condensate, particularly its eventual relation to the formation of quantum droplet-type configurations. We prove that the corresponding properties, such as the energy of the associated N-body ground state, differ substantially with respect to its three-dimensional counterpart. Consequently, the free velocity expansion also shows remarkable differences with respect to the three-dimensional system when logarithmic interactions are taken into account. The one-dimensional logarithmic condensate tends to form quantum droplet-type configurations when the external trapping potential is turned off, i.e., the self-sustainability or self-confinement appears as in three-dimensions. However, we obtain that for some specific values of the self-interaction parameters and the number of particles under consideration, the cloud oscillates during the free expansion around to a specific equilibrium size. These results show that we are able to describe scenarios in which the one-dimensional cloud reaches stable configurations, i.e., oscillating quantum droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. See for instance Ref. [44] and references therein for some insights related to this topic.

References

  1. H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, T. Pfau, Nature 530(7589), 194 (2016)

    Article  ADS  Google Scholar 

  2. I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, T. Pfau, Phys. Rev. Lett. 116(21), 215301 (2016)

    Article  ADS  Google Scholar 

  3. L. Chomaz, S. Baier, D. Petter, M.J. Mark, F. Wächtler, L. Santos, F. Ferlaino, Phys. Rev. X 6(4), 041039 (2016)

    Google Scholar 

  4. M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, T. Pfau, Nature 539(7628), 259 (2016)

    Article  ADS  Google Scholar 

  5. C.R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, L. Tarruell, Science 359(6373), 301 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  6. G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, M. Fattori, Phys. Rev. Lett. 120(23), 235301 (2018)

    Article  ADS  Google Scholar 

  7. P. Cheiney, C.R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, L. Tarruell, Phys. Rev. Lett. 120(13), 135301 (2018)

    Article  ADS  Google Scholar 

  8. J.M. Gerton, D. Strekalov, I. Prodan, R.G. Hulet, Nature 408(6813), 692 (2000)

    Article  ADS  Google Scholar 

  9. E.A. Donley, N.R. Claussen, S.L. Cornish, J.L. Roberts, E.A. Cornell, C.E. Wieman, Nature 412(6844), 295 (2001)

    Article  ADS  Google Scholar 

  10. D.S. Petrov, Phys. Rev. Lett. 115(15), 155302 (2015)

    Article  ADS  Google Scholar 

  11. A.V. Avdeenkov, K.G. Zloshchastiev, J. Phys. B At. Mol. Opt. Phys. 44(19), 195303 (2011)

    Article  ADS  Google Scholar 

  12. B. Bouharia, Mod. Phys. Lett. B 29(01), 1450260 (2015)

    Article  ADS  Google Scholar 

  13. K.G. Zloshchastiev, Eur. Phys. J. B 85(8), 273 (2012)

    Article  ADS  Google Scholar 

  14. G.E. Astrakharchik, B.A. Malomed, Phys. Rev. A 98(1), 013631 (2018)

    Article  ADS  Google Scholar 

  15. E.Ö. Karabulut, M. Koyuncu, M. Tomak, Phys. A Stat. Mech. its Appl. 389(7), 1371 (2010)

    Article  ADS  Google Scholar 

  16. Z. Yan, Phys. Rev. A 59(6), 4657 (1999)

    Article  ADS  Google Scholar 

  17. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Nature 429(6989), 277 (2004)

    Article  ADS  Google Scholar 

  18. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305(5687), 1125 (2004)

    Article  ADS  Google Scholar 

  19. V.I. Yukalov, Phys. Rev. A 72(3), 033608 (2005)

    Article  ADS  Google Scholar 

  20. V.I. Yukalov, Laser Phys. Lett. 1(9), 435 (2004)

    Article  ADS  Google Scholar 

  21. V.I. Yukalov, Phys. Part. Nucl. 42(3), 460 (2011)

    Article  Google Scholar 

  22. E. Castellanos, Mod. Phys. Lett. B 30(22), 1650307 (2016)

    Article  ADS  Google Scholar 

  23. E.H. Lieb, W. Liniger, Phys. Rev. 130(4), 1605 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  24. E.H. Lieb, Phys. Rev. 130(4), 1616 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Tonks, Phys. Rev. 50(10), 955 (1936)

    Article  ADS  Google Scholar 

  26. M. Girardeau, J. Math. Phys. 1(6), 516 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Lenard, J. Math. Phys. 7(7), 1268 (1966)

    Article  ADS  Google Scholar 

  28. T. Cheon, T. Shigehara, Phys. Rev. Lett. 82(12), 2536 (1999)

    Article  ADS  Google Scholar 

  29. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993)

    Book  MATH  Google Scholar 

  30. J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 86(19), 4211 (2001)

    Article  ADS  Google Scholar 

  31. M.R. Andrews, C.G. Townsend, H.J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle, Science 275(5300), 637 (1997)

    Article  Google Scholar 

  32. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  33. S. Vowe, C. Lämmerzahl, M. Krutzik, Phys. Rev. A 101(4), 043617 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Gähler, A.G. Klein, A. Zeilinger, Phys. Rev. A 23(4), 1611 (1981)

    Article  ADS  Google Scholar 

  35. A. Görlitz, J.M. Vogels, A.E. Leanhardt, C. Raman, T.L. Gustavson, J.R. Abo-Shaeer, A.P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, W. Ketterle, Phys. Rev. Lett. 87(13), 130402 (2001)

    Article  ADS  Google Scholar 

  36. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  37. S. Pradhan, B.N. Jagatap, Rev. Sci. Instrum. 79(1), 013101 (2008)

    Article  ADS  Google Scholar 

  38. H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus, H. Duncker, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T.W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S.T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W.P. Schleich, E.M. Rasel, Phys. Rev. Lett. 110(9), 093602 (2013)

    Article  ADS  Google Scholar 

  39. T. van Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, S.T. Seidel, W. Ertmer, E. Rasel, M. Eckart, E. Kajari, S. Arnold, G. Nandi, W.P. Schleich, R. Walser, A. Vogel, K. Sengstock, K. Bongs, W. Lewoczko-Adamczyk, M. Schiemangk, T. Schuldt, A. Peters, T. Konemann, H. Muntinga, C. Lammerzahl, H. Dittus, T. Steinmetz, T.W. Hansch, J. Reichel, Science 328(5985), 1540 (2010)

    Article  ADS  Google Scholar 

  40. E.R. Elliott, M.C. Krutzik, J.R. Williams, R.J. Thompson, D.C. Aveline, npj Microgravity 4(1), 16 (2018)

    Article  ADS  Google Scholar 

  41. ...K. Frye, S. Abend, W. Bartosch, A. Bawamia, D. Becker, H. Blume, C. Braxmaier, S.W. Chiow, M.A. Efremov, W. Ertmer, P. Fierlinger, T. Franz, N. Gaaloul, J. Grosse, C. Grzeschik, O. Hellmig, V.A. Henderson, W. Herr, U. Isralseson, J. Kohel, M. Krutzik, C. Kürbis, C. Lämmerzahl, M. List, D. Lüdtke, N. Lundblad, J.P. Marburger, M. Meister, M. Mihm, H. Müller, H. Müntinga, A.M. Nepal, T. Oberschulte, A. Papakonstantinou, J. Perovs̆ek, A. Peters, A. Prat, E.M. Rasel, A. Roura, M. Sbroscia, W.P. Schleich, C. Schubert, S.T. Seidel, J. Sommer, C. Spindeldreier, D. Stamper-Kurn, B.K. Stuhl, M. Warner, T. Wendrich, A. Wenzlawski, A. Wicht, P. Windpassinger, N. Yu, L. Wörner, EPJ Quantum Technol. 8(1), 1 (2021)

    Article  Google Scholar 

  42. I. Bialynicki-Birula, J. Mycielski, Ann. Phys. (N. Y.) 100(1–2), 62 (1976)

    Article  ADS  Google Scholar 

  43. L.W. Clark, A. Gaj, L. Feng, C. Chin, Nature 551(7680), 356 (2017)

    Article  ADS  Google Scholar 

  44. E. Castellanos, G. Chacón-Acosta, J. Mastache, arXiv: 2012.03445v1 (2020)

Download references

Acknowledgements

E. C. acknowledges the receipt of the grant from the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. This work was partially supported also by CONACyT México under Grant No. 304001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elías Castellanos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-López, O.A., Castellanos, E. Oscillating Quantum Droplets From the Free Expansion of Logarithmic One-dimensional Bose Gases. J Low Temp Phys 204, 111–128 (2021). https://doi.org/10.1007/s10909-021-02601-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02601-y

Keywords

Navigation